Egocentric spatial language uses coordinates in relation to our body to talk about small-scale space ("put the knife on the right of the plate and the fork on the left"), while geocentric spatial language uses geographic coordinates ("put the knife to the east, and the fork to the west"). How do children learn to use geocentric language? And why do geocentric spatial references sound strange in English when they are standard practice in other languages? This book studies child development in Bali, India, Nepal, and Switzerland and explores how children learn to use a geocentric frame both when speaking and performing non-verbal cognitive tasks (such as remembering locations and directions). The authors examine how these skills develop with age, look at the socio-cultural contexts in which the learning takes place, and explore the ecological, cultural, social, and linguistic conditions that favor the use of a geocentric frame of reference.

Pierre R. Dasen is Professor Emeritus in the Faculty of Psychology and Educational Sciences at the University of Geneva, Switzerland. His field of expertise is cross-cultural developmental psychology, particularly culture and cognition and the interface between anthropology and psychology. Professor Dasen is the founder of the Association pour la Recherche Interculturelle (ARIC) and an honorary member of the International Association for Cross-Cultural Psychology (IACCP).

Ramesh C. Mishra is Professor in the Department of Psychology at the Banaras Hindu University, Varanasi, India. His principal interest is in cultural influences on human development, and he has contributed numerous articles to professional journals, both in India and abroad, in the fields of cognition, acculturation, schooling, and cross-cultural studies.
The aim of this series is to provide a scholarly forum for current theoretical and empirical issues in cognitive and perceptual development. As the twenty-first century begins, the field is no longer dominated by monolithic theories. Contemporary explanations build on the combined influences of biological, cultural, contextual, and ecological factors in well-defined research domains. In the field of cognitive development, cultural and situational factors are widely recognized as influencing the emergence and forms of reasoning in children. In perceptual development, the field has moved beyond the opposition of "innate" and "acquired" to suggest a continuous role for perception in the acquisition of knowledge. These approaches and issues will all be reflected in the series, which will also address such important research themes as the indissociable link between perception and action in the developing motor system, the relationship between perceptual and cognitive development and modern ideas on the development of the brain, the significance of developmental processes themselves, dynamic systems theory, and contemporary work in the psychodynamic tradition, especially as it relates to the foundations of self-knowledge.

Titles published in the series

1. Jacqueline Nadel and George Butterworth, *Imitation in Infancy*
2. Margaret Harris and Giyoo Hatano, *Learning to Read and Write: A Cross-Linguistic Perspective*
3. Michael Siegal and Candida Peterson, *Children's Understanding of Biology and Health*
5. Antonio M. Battro, *Half a Brain is Enough: The Story of Nico*
6. Andrew N. Meltzoff and Wolfgang Prinz, *The Imitative Mind: Development, Evolution and Brain Bases*
8. Heidi Keller, Ype H. Poortinga, and Axel Schölmerich, *Between Culture and Biology: Perspectives on Ontogenetic Development*
9. Nobuo Masataka, *The Onset of Language*
10. Andreas Demetriou and Athanassios Raftopoulos, *Cognitive Developmental Change: Theories, Models and Measurement*
11. Kurt W. Fischer, Jane Holmes Bernstein, and Mary Helen Immordino-Yang, *Mind, Brain, and Education in Reading Disorders*
Development of Geocentric Spatial Language and Cognition

An Eco-cultural Perspective

Pierre R. Dasen

and

Ramesh C. Mishra
Contents

List of figures page vii
List of tables x
Preface xiv
Acknowledgements xviii

Part I Introduction and methods

1 Theory and research questions 3
2 Methods 49
3 Settings 76

Part II Results

4 Pilot study in Bali and first study (India and Nepal, 1999–2000) 109
5 Returning to Bali: main study 2002–2007 141
6 Varanasi 163
7 Kathmandu 184
8 Panditpur 213
9 Geneva 222

Part III Additional studies

10 Spatial language addressed to children 233
11 Geocentric gestures before language? 242
12 Spatial organization schemes 248
13 Neurophysiological correlates of geocentric space 265

Contents vi

14 Geocentric dead reckoning 281

Part IV Conclusions

15 Discussion and conclusions 297

Appendices

1 Summary of instructions, questionnaires and coding schemes 323
2 Examples of language in each location 335
3 Extracts from school manuals 346

Bibliography 355
Name index 376
Subject index 381
Figures

1.1 An integrated theoretical framework for cross-cultural human development
 Reproduced with permission from Levinson (2003), p. 40
 page 15

1.2 Three spatial frames of reference (FoR)
 Reproduced with permission from Levinson (2003), p. 132
 page 23

1.3 The basic design of the rotation paradigm. Reproduced with permission from Levinson (2003), p. 132
 page 27

2.1 Perspectives task
 page 54

2.2 Different forms of the Perspectives task
 page 55

2.3 Road task, in Bali
 page 56

2.4 Animals in a row. Four animals and 180° rotation.
 Adapted from Levinson (2003), Fig. 4.11, p. 156
 page 60

2.5 Animals in a row. Items 6 and 7 with 90° rotation.
 Adapted from Levinson (2003), Fig. 5.12, p. 204
 page 61

2.6 Chips task
 page 62

2.7a Steve’s Maze
 page 63

2.7b Steve’s Maze scoring sheet
 page 64

2.8 Testing the knowledge of the orientation system.
 Example from Singaraja, Bali.
 page 65

2.9 Rotation of Landscapes
 page 67

2.10a Simple and complex Route Memory task and b
 page 69

2.11 Block Designs Test (BDT)
 page 70

2.12 Three items of the SPEFT
 page 71

3.1 Balinese orientation system (KKKK)
 page 77

3.2 Local adaptations of the Balinese orientation system
 page 81

3.3 Sanskrit orientation system
 page 95

5.1 Spontaneous language on Perspectives by age
 page 144

5.2 Spontaneous language on Perspectives in three language groups
 page 145

5.3 Spontaneous language on Road in three language groups
 page 146

5.4 G language object score in three language groups
 page 148
viii List of figures

5.5 G language object score in rural and urban samples 148
5.6 Knowledge of Balinese orientation system (KKKK), inside, in three language groups 149
5.7 Knowledge of Indonesian orientation system (NSEW), inside, in three language groups 149
5.8 Knowledge of the two orientation systems (Balinese, KKKK and Indonesian, NSEW) in the city and in the village 150
5.9 Development of knowledge of Balinese and Indonesian egocentric terms (LRFB) in three language groups 151
5.10 R-A gradient on Animals, three assessment formats (3 animals, 5 items; 4 animals, 5 items; 4 animals, 7 items including two at 90°) 154
5.11 R-A gradients on three encoding tasks: Animals (4 animals), Chips and Steve’s Maze, by location 155
5.12 Amos summary model for Bali 160
6.1 Knowledge of NSEW and LRFB by age and school type 167
6.2 Graphic representation of Princals’ derived two dimensions of mobility 176
6.3 Amos summary model for Varanasi 182
7.1 Spontaneous language on Perspectives 187
7.2 Spontaneous language on Perspectives by age and school type 188
7.3 Spontaneous language on Road by age and school type 189
7.4 Mean use of English on Road, by age and school type 196
7.5 Princals analysis showing two dimensions of mobility 199
7.6 Amos summary model for Kathmandu 210
8.1 Spontaneous language on the Perspectives by age 215
8.2 Spontaneous language on the Road by age 215
8.3 R-A gradients on encoding tasks by age 216
8.4 R-A gradients on encoding tasks by grade 217
8.5 Princals component loadings of activities 218
9.1 Knowledge of LRFB and NSEW 224
9.2 Spontaneous language on Perspectives by age 225
9.3 Spontaneous language on Road by age 226
9.4 R-A gradients on three encoding tasks by age, and changes in procedures 227
10.1 Frequencies of geocentric (NSEW) language addressed by mothers in Roopchandpur to children from 1 to 11 years 237
10.2 Frequencies of correct geocentric (NSEW) language addressed by mothers in Roopchandpur to children when describing village sites 237
List of figures

11.1 Three types of gestures with deixic language, by age 246
12.1 Classification of schemes 256
12.2 Development of schemes with age in Kathmandu 261
12.3 Development of schemes with age in Geneva 263
15.1 Princals factorial space for non-verbal encoding tasks in four locations 304

A3.1 Extract from grade 2 book, Nepali schools

A3.2 Extract from grade 2 book, English schools

A3.3 Extract from grade 2 book, English schools

A3.4 Extract from grade 1 book, Hindi schools

A3.5 Extract from grade 3 book, Urdu school
Tables

1.1 Western vs. Asian thought according to Nisbett (2003)
1.2 Spatial frames of reference in developmental psychology and in linguistics
1.3 Languages studied by Levinson *et al.* (2003, p.182)
1.4 Available FoR and preferred frames in the languages of this study
2.1 Language coding scheme
3.1 Characteristics of English (private) and Nepali (government) schools
4.1 Sample characteristics of study in Bali, 1994
4.2 R-A gradients on spatial encoding tasks in Bali by age group
4.3 Changes of answers between first and second session (N=27)
4.4 Design, and number of children in each sample in India and Nepal, first study (1999–2000)
4.5 Percentage of modal language use on combined tasks, by age group, in three locations
4.6 R-A gradients (and standard deviations) on spatial encoding tasks by age group in three locations
4.7 Princals results on three encoding tasks
4.8 Categories of language used by schooled and unschooled rural Nepalese children
4.9 Partial correlations between language and encoding (R-A gradients), controlling for age and years of schooling
4.10 Language used on encoding tasks. Geocentric and Egocentric encoding on items 4 and 5 of three tasks combined. Language categories as defined in chapter 2.
4.11 Description on Perspectives task when moving around display by predominant spatial language used (6 to 14 year old children combined)
4.12 Partial correlations among the Piagetian tasks, controlling for age and schooling
4.13 Princals analysis of Piagetian tasks
List of tables

4.14 Partial correlations, controlling for age and schooling, between the proportions of the different language categories and object scores on Piagetian cognitive tasks 128
4.15 Change in second administration of the Animals task, with induction 130
4.16 Princals analysis of SES score 130
5.1 Sample characteristics of main study in Bali, 2002 142
5.2 Balinese and Indonesian used at home 142
5.3 Balinese and Indonesian used on tests 143
5.4 Cross-tabulation of language spoken in the home and preferred on tests 143
5.5 Princals optimal scaling for 3 language tasks 147
5.6 Encoding on Animals task in 3 locations in Bali, 1994 and 2002 (in %) 152
5.7 Princals optimal scaling for non-verbal encoding tasks 156
5.8 Language and encoding on Nijmegen tasks (number of items and %) 157
5.9 Correlations between G language and G encoding and social indicators 158
6.1 Sample characteristics, Varanasi main study 164
6.2 Spontaneous language use on Perspectives by school type 167
6.3 Spontaneous language use on Road by school type 168
6.4 Princals factor loadings for language elicitation tasks 169
6.5 Comparison of R-A gradients in 1st study and in main study 170
6.6 Princals component loadings for encoding tasks 170
6.7 Mean object scores on G language and G encoding by school type 171
6.8 Pearson correlation coefficients between school type, gender, age, language, and encoding 171
6.9 Partial correlation coefficients between gender, age, language, and encoding, controlling for school type 172
6.10 Pearson correlation coefficients with BDT and SPEFT 174
6.11 Component loadings on Princals analyses of mobility measures 176
6.12 Princals component loadings for village contact 177
6.13 Princals analysis of SES status variables 177
6.14 Princals component loadings of media variables 178
6.15 Frequencies and percentages of children with village or city background by school type 179
6.16 Princals component loadings for migration history 179
6.17 Pearson correlation coefficients between the various summary scores for the background variables and school type 180
List of tables

6.18 Correlations between background variables and measures of geocentric knowledge, language and encoding 182
7.1 Sample characteristics, Kathmandu 185
7.2 Knowledge of cardinal directions, indoors, by age group and school type 186
7.3 Princals analysis of language elicitation tasks 190
7.4 R-A gradients on three spatial encoding tasks by age-group, rural/urban 191
7.5 Mean R-A gradients by age group and task demands 192
7.6 Princals results on non-verbal encoding tasks 192
7.7 G and E language and encoding on items for three tasks (frequencies) 194
7.8 Coherence between language and encoding (in percent) 194
7.9 Results of child questionnaire for mobility, by school type (in percent) 198
7.10 Princals component loadings on contact with village 200
7.11 Princals component loadings of SES indicators 201
7.12 Princals component loadings of contact with media 201
7.13 Princals component loadings on migration history 202
7.14 Pearson correlation coefficients among background variables 204
7.15 Correlations between background variables, language and cognition 205
8.1 Sample characteristics, Panditpur 214
8.2 Sample characteristics, age by grade 214
8.3 Component loadings of language tasks on Princals analysis 216
8.4 Component loadings of encoding tasks on Princals analysis 217
8.5 Princals component loadings for city contact 218
9.1 Sample characteristics, Geneva 223
9.2 First languages spoken by children 223
9.3 Migration history 223
9.4 Correspondence between language and encoding on items 4 and 5 of encoding tasks 228
10.1 Mothers’ language addressed to children in Roopchandpur 236
10.2 Mothers’ language addressed to children in Dolakha 238
11.1 Scoring of language and gestures 244
11.2 Consistent (in bold) and inconsistent items between language and gestures 245
11.3 Deictic language and three types of gestures 246
12.1 Same or different description on Perspectives when moving around display 250
12.2 Same or different descriptions according to G and E language FoR 251
List of tables

12.3 Frequencies of children giving different or the same descriptions in positions 2 and 3 in various locations 252
12.4 Varanasi: t-tests between groups giving same or different description on position 2 253
12.5 Varanasi: t-tests between groups giving same or different description on position 3 (rotation of display) 253
12.6 Kathmandu: t-tests between groups giving same or different description on positions 2 and 3 254
12.7 Percentage of spatial schemes used by Hindi- and Sanskrit-school children at position 1, position 2 and after rotation of the display 257
12.8 Correspondence of spatial schemes at position 2, and after display rotation, relative to schemes at position 1 (in percent) 258
12.9 Same versus different schemes at position 2, and after display rotation 259
12.10 Partial correlation (age controlled) of schemes with other spatial cognitive variables 259
12.11 Bali: same versus different schemes at position 2, and after display rotation (in percent) 261
12.12 Kathmandu: same versus different schemes at position 2, and after display rotation (in percent) 262
12.13 Partial correlations between schemes and language in Geneva, controlling for age 263
13.1 List of peripheral laterality tasks 269
13.2 Variables used for brain lateralization study 271
13.3 Partial correlations of hemispheric dominance variables with G language and G encoding in Varanasi 272
13.4 Mean scores of brain-damaged (group 1) and normal (group 2) subjects on various measures 277
13.5 Use of distractors (D) by brain-damaged and normal subjects on encoding tasks and G- on Perspectives and Road tasks 278
14.1 Distribution of different levels of experts in Sanskrit and Hindi schools 287
14.2 Interviews on processes in keeping track of directions in Sanskrit- and Hindi-school children with varying degrees of expertise: percentage of children giving various categories of answers 288
14.3 Language used on Route task by experts of different levels in Sanskrit and Hindi schools 290
15.1 Pearson correlations (and partial correlations controlling for age) between language and encoding and spatial ability measures 320
Preface

This book reports a cross-cultural study of child development in Indonesia (Bali), India, Nepal, and Switzerland, particularly in the area of spatial language and cognition. It examines a particular skill that is unfamiliar in Western contexts, which consists of using large-scale (“geocentric”) spatial directions such as north, south, east, and west (NSEW) when talking about the location of objects inside a room. Various ecological and socio-cultural conditions that favor the development of this skill are examined.

The geocentric spatial frame of reference (FoR) was first described and studied in anthropological linguistics by scholars at the Cognitive Anthropology Research Group (CARG) of the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands. The findings are summarized in Levinson’s (2003) book *Space in language and cognition*. This linguistic research, carried out through extensive field-work mainly with adults, examined over forty, mostly unwritten, languages spoken in small-scale, traditional societies, languages that favor a geocentric FoR. The argument is that when such a frame is used in language, it will also be used in non-linguistic cognition, such as memory and reasoning. Hence, Levinson (2003) and his group take a fairly strong “Whorfian” point of view of linguistic relativism.

One of us (P. Dasen) was made aware of this research in the early 1990s through Professor Jürg Wassmann, who had spent some time with Levinson’s team, an anthropologist who was interested not only in cognitive anthropology (Wassmann, 1993a) but also in linking it to developmental psychology (Wassmann, 1988). Wassmann and Dasen (1994a/b) had carried out some research together in Papua New Guinea on number concepts and classification, and in 1994 the opportunity arose for a common study of the development of geocentric spatial language and cognition in Balinese children (Wassmann & Dasen, 1996, 1998, 2006). This study raised a number of interesting questions, which the authors of this book tried to tackle in a first study in India and Nepal in 1999–2000, and then again in what we call the main study, field-work for which was carried out from 2002 to 2007. Hence the research reported here has been a long-standing project, and we try to communicate to the reader some of the suspense we have experienced over these years somewhat like a detective.
story. Every result leads to a next question, which is what keeps us going as researchers. But we now feel that we have a coherent body of information, and that it is time to share this in the form of a single volume.

The book is organized in four parts. In Part I, the theory and research questions are presented in chapter 1, which gives us the opportunity to review our understanding of the wider area of “culture and cognition” from a (cross-)cultural and developmental perspective. Throughout the various studies, some of the tasks remained the same to ensure comparability, while some tasks were modified along the way to take more recent developments into account, and still other tasks are specific to particular studies. The methods that are common to several studies are described in chapter 2. Similarly, chapter 3 provides a description of the various locations in different countries, including their relevant cultural and linguistic characteristics.

The second part of the book presents the main results, chapter 4 of the initial study in Bali and the subsequent first study in India and Nepal, and chapters 5 to 9 the results of the main study in different locations, i.e. Bali (Indonesia), Varanasi (India), Kathmandu (Nepal), Panditpur (India), and Geneva (Switzerland).

These chapters have much in common, since some of the research questions and the methods remained the same across locations, but each chapter also deals with a specific problem. Chapter 5 recounts a replication study in Bali, where we went to check on our initial results with much larger samples and more complete methods. The results point to the importance of traditional Balinese culture and language, which help to maintain the use of geocentric language and cognition, while the impact of acculturation through schooling, urban life, and in particular the use of Bahasa Indonesian as a language, contributes to the choice of a more egocentric FoR. In Varanasi (chapter 6), we examine in particular the importance of Hindu religious practices in fostering a geocentric FoR. The study is organized as a comparison of Sanskrit-school and Hindi-school pupils. In Kathmandu (chapter 7), we follow up on one of the findings from Bali, namely the impact of bilingualism with a language that usually favors an egocentric FoR, i.e. English. The comparison, in this case, is between English and Nepali school groups. Research in this location also includes full details of the relationships between using geocentric (G) language and G cognition (encoding) and various socio-cultural background variables. Chapter 8 reports a study in a rural location in India where it seemed that an egocentric FoR was predominant, which turned out not to be the case, and chapter 9 deals with Geneva as a sort of “control” group, i.e. a location in which the geocentric FoR is just simply never used.

The studies in Bali, Kathmandu, Panditpur, and Geneva provide developmental information on a large range of ages, namely 4 to 12 years, while in Varanasi we purposely studied an older group of children, 11 to 15 years. It is
in this age group that individual differences in the choice between an egocentric and a geocentric spatial FoR seem to be most marked. This also provides us with an opportunity to study in more detail the relationships between using G language and G encoding and other aspects of psychological functioning, such as spatial ability and psychological differentiation.

In Part III, we report a series of additional studies, additional not because the questions they seek to answer are less important, but because these studies are specific to particular locations or samples. Chapter 10 recounts a study carried out in rural Nepal and rural India on mothers’ spatial language addressed to children of various ages, from 12 months to 12 years. It is an attempt to describe the linguistic models children hear and learn to imitate. Chapter 11 deals with a study of spatial gestures, using these to guess which FoR young children in Kathmandu use when their language is ambiguous. In chapter 12, we carry out some micro-analyses on how children organize a spatial display depending on the FoR they use. For example, do they use the same description of a display from various positions when they move around it or when the display is rotated? Which schemes do they actually use to subdivide a display of three objects, and how do these change with age in the different groups we have studied?

Chapter 13 deals with neurophysiological correlates of using a geocentric FoR. It examines in particular the role of peripheral and central brain lateralization. It is commonly assumed that differences in neurophysiology cannot be cultural, i.e. these processes are either assumed to be universal, or differences are attributed to genetics. This is not necessarily so. While basic processes are no doubt universal, a diversity in brain functioning may develop through the exposure to particular experiences and practices (Fox, 2006). The question therefore arises whether using a geocentric FoR rests on, or produces, different neural pathways than using an egocentric frame. This is the part of our research, using a split-half visual field technique with children in Varanasi and Kathmandu, that comes closest to laboratory research. It is complemented by an exploratory study with twenty patients having undergone surgery for right-hemispheric brain damage.

In chapter 14, we report a study that seeks to test the limits of how people who use a geocentric FoR are able to carry spatial orientation with them. In this experiment, children in Varanasi were not only able to keep track of cardinal directions inside of a building, but some of them were able to do so even when blindfolded, turned around and led blindfolded to another room. Interviews with these “experts” tried to tease out how this process of dead reckoning functions and how it is acquired.

Part IV of the book is devoted to chapter 15, the general discussion of our results and conclusions. We link these back to an integrated theoretical framework for the cross-cultural study of human development that is presented in
chapter 1. Our general conclusion is that the development of geocentric spatial language and cognition occurs in a complex eco-cultural system, which is adaptive and functional. The choice between an egocentric and a geocentric FoR is akin to a cognitive style. Consequently, on the basis of a review of the cross-cultural psychological literature and of the results presented in this volume, we argue that cultural differences occur not in the presence or absence of particular cognitive processes, but in the preference for particular cognitive styles.
Acknowledgements

The research reported in this volume has been supported by the Swiss National Scientific Granting Commission (grants 11–54101.98 and 113–67178.01 to P. Dasen). The drafting of this volume was greatly facilitated by a Fellowship at the Netherlands Institute of Advanced Studies (NIAS) attributed to R. C. Mishra.

Organization of programmatic research away from home requires help from colleagues and friends at various places. In our case it has been possible with the active participation and support of two good colleagues. Jürg Wassmann, Professor of anthropology at the University of Heidelberg, introduced P. Dasen to Bali in Indonesia, and we twice did field-work there. The main study in Bali was facilitated by Professor I. Gde Pitana, Udayane University, Denpasar, Bali, and Professor Wayan Nurkancana and Dr. I. Nyoman Adil, IKIP, Singaraja, Bali.

In Nepal our task was made easier by the active participation of Dr. Shanta Niraula, Professor at Tribhuvian University of Kathmandu, in organizing and supervising studies at the remote rural setting of Dolakha as well as in the city of Kathmandu. She shared the major responsibility of field-work in Nepal by arranging local research assistance and traveling to field sites for regular supervision of data collection, and providing us with regular feedback on the progress made on the work. In addition, she was a wonderful host during our visits to Nepal.

The success of any research depends on the sincerity and dedication of assistants and we feel quite privileged because we had highly motivated research assistants at all locations. We take this opportunity to thank them all and sincerely acknowledge their contributions. At Varanasi, Ms. Neha Acharya, Ms. Nishat Afroz, Ms. Vanadana Chaubey, Mr. Girish Chandra Chaubey, Ms. Shweta Kumary, and Dr. Surabhi Prakash rendered valuable help in data collection in different phases of the study. Dr. Akhilesh Chandra Chaubey and Dr. Aparna Vajpayee played a major role as research supervisors. Ms. Sunita Singh played multiple roles in the whole research program.

In Nepal, Ms. Laksmi Shrestha and Mr. Padma Ghimire collected data at Dolakha, and Ms. Rena Shrestha and Mr. Purushottam Tandon in the city of
Acknowledgements

Kathmandu. In Bali, our initial study in 1994 was carried out with the help of Mr. Nengah Danta, and the second study with Mr. Made (Kadek) Aryawan Adijaya and Mr. I. Nyoman Pasek Hadisaputra. In Geneva, data were collected with the help of Ms. Marie Anne Broyon, Ms. Anahy Gajardo and Dr. Yvan Leanza (who is now Professor at the Laval University in Quebec City). Ms. Milena Abbiati and Dr. Nilima Changkakoti, also from the University of Geneva, helped with the coding of video data for the gesture study, together with Mr. Harold Foy, of the University of Quebec at Rimouski.

Several others have helped us in organizing field activities in or near Varanasi. We sincerely acknowledge the support of Akhilesh’s family at Roopchandpur village for making a part of their house available for testing, arranging appointments with participants, and rendering great hospitality to the research team during the field-work in the village, and similarly Mr. G. C. Tripathi and his family in the city of Varanasi. Dr. Shabana Bano rendered her help whenever we called for it. For the second study in Varanasi we feel extremely grateful to Mr. Lalit Bahadur Singh, Manager, Malviya Shiksha Niketan, not only for making his own house available for research work, but also for his personal care. We also feel highly grateful to Ms. Prabha Singh, Principal, Malviya Shiksha Niketan, for welcoming us to work with children at her school. The work would have not been so smooth without their help and constant support.

Research work in Nepal would not have been possible without the all-round support of Mr. H. S. Niraula. He made us feel at home in Kathmandu by extending a very kind hospitality, and was functional in the field by arranging local contacts, research assistants and all the facilities for our stay and work in Dolakha. On several occasions he took the pain of traveling and staying with us. We sincerely thank him for his support. We also thank Professor Ayan Bahadur Shrestha, former Professor and head of the Psychology Department, Tribhuvan University, Kathmandu. He was not only a great source of inspiration for the whole research team during the field-work, but also a great source of information about the life and culture of people in Nepal.

The late Professor Babban Misra of Gorakhpur University was instrumental in organizing research at Panditpur. He was a wonderful host and a good research supervisor. Ms. Jyotima Pandey, Ms. Ragini Rai and Ms. Shilpa Singh carried out all testing and interviews at Panditpur. Mr. Hari Madhav Pandey welcomed us in his village and introduced us to the village surroundings and the school teachers.

On several occasions during this project, we were able to discuss preliminary data and research issues with interested colleagues, in particular at workshops and conferences. We thank particularly the Cognitive Anthropology Research Group (CARG) at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands; this group includes Steve Levinson, Melissa Bowerman, Gaby Cablitz, Daniel Haun, Olivier Le Guen, Asifa Majid, Bhuvana Narasimhan,
xx Acknowledgements

Günther Senft, Edith Sjoerdsma, and David Wilkins. We especially thank Penny Brown, who painstakingly read through our very rough drafts while she was herself on field-work in Papua New Guinea; any errors and misinterpretations are of course our responsibility and not hers. Colleagues from other locations who contributed ideas and discussions include Symen Browers, Pascale Cottereau-Reiss, Marie-Noëlle Chamoux, Fabienne Tanon, Bertrand Troade, and Gisela Trommsdorff, as well as three anonymous reviewers.

We particularly thank Dr. Rudo Niemeijer for his expert help with statistical analyses, during many work meetings in Holland, Portugal and Switzerland, as well as at a distance.