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Introduction

Presenting a brief review of the history of the subject. — The modern perspective.

Quantum field theory (QFT) was born as a consistent theory for a unified description of
physical phenomena in which both quantum-mechanical aspects and relativistic aspects
are important. In historical reviews it is always difficult to draw a line that would separate
“before” and “after.”1 Nevertheless, it would be fair to say that QFT began to emerge
when theorists first posed the question of how to describe the electromagnetic radiation
in atoms in the framework of quantum mechanics. The pioneers in this subject were Max
Born and Pascual Jordan, in 1925. In 1926 Max Born, Werner Heisenberg, and Pascual
Jordan formulated a quantum theory of the electromagnetic field, neglecting polarization
and sources to obtain what today would be called a free field theory. In order to quantize
this theory they used the canonical quantization procedure. In 1927 Paul Dirac published
his fundamental paper “The quantum theory of the emission and absorption of radiation.”
In this paper (which was communicated to the Proceedings of the Royal Society by Niels
Bohr), Dirac gave the first complete and consistent treatment of the problem. Thus quantum
field theory emerged inevitably, from the quantum treatment of the only known classical
field, i.e. the electromagnetic field.

Dirac’s paper in 1927 heralded a revolution in theoretical physics which he himself
continued in 1928, extending relativistic theory to electrons. The Dirac equation replaced
Schrödinger’s equation for cases where electron energies and momenta were too high for
a nonrelativistic treatment. The coupling of the quantized radiation field with the Dirac
equation made it possible to calculate the interaction of light with relativistic electrons,
paving the way to quantum electrodynamics (QED).

For a while the existence of the negative energy states in the Dirac equation seemed to
be mysterious. At that time – it is hard to imagine – antiparticles were not yet known! It
was Dirac himself who found a way out: he constructed a “Dirac sea” of negative-energy
electron states and predicted antiparticles (positrons), which were seen as “holes” in this sea.

The hole theory enabled QFT to explore the notion of antiparticles and its consequences,
which ensued shortly. In 1927 Jordan studied the canonical quantization of fields, coining
the name “second quantization” for this procedure. In 1928 Jordan and Eugene Wigner
found that the Pauli exclusion principle required the electron field to be expanded in plane
waves with anticommuting creation and destruction operators.

1 For a more detailed account of the first 50 years of quantum field theory see e.g. Victor Weisskopf’s article [1]
or the “Historical introduction” in [2] and vivid personal recollections in [3].

1

http://www.cambridge.org/9780521190848
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19084-8 - Advanced Topics in Quantum Field Theory: A Lecture Course
M. Shifman
Excerpt
More information

2 Introduction

In the mid-1930s the struggle against infinities in QFT started and lasted for two decades,
with a five-year interruption during World War II. While the infinities of the Dirac sea and
the zero-point energy of the vacuum turned out to be relatively harmless, seemingly insur-
mountable difficulties appeared in QED when the coupling between the charged particles
and the radiation field was considered at the level of quantum corrections. Robert Oppen-
heimer was the first to note that logarithmic infinities were a generic feature of quantum
corrections. The best minds in theoretical physics at that time addressed the question how to
interpret these infinities and how to get meaningful predictions in QFT beyond the lowest
order. Now, when we know that every QFT requires an ultraviolet completion and, in fact,
represents an effective theory, it is hard to imagine the degree of desperation among the the-
oretical physicists of that time. It is also hard to understand why the solution of the problem
was evasive for so long. Landau used to say that this problem was beyond his comprehen-
sion and he had no hope of solving it [4]. Well . . . times change. Today’s students familiar
with Kenneth Wilson’s ideas will immediately answer that there are no actual infinities: all
QFTs are formulated at a fixed short distance (corresponding to large Euclidean momenta)
and then evolved to large distances (corresponding to small Euclidean momenta); the only
difference between renormalizable and nonrenormalizable field theories is that the former
are insensitive to ultraviolet data (which can be absorbed in a few low-energy parameters)
while the latter depend on the details of the ultraviolet completion. But at that time theorists
roamed in the dark. The discovery of the renormalization procedure by Richard Feynman,
Julian Schwinger, and Sin-Itiro Tomonaga, which came around 1950, was a breakthrough, a
ray of light. Crucial developments (in particular, due to Freeman Dyson) followed immedi-
ately.The triumph of quantum field theory became completewith the emergence of invariant
perturbation theory, Feynman graphs, and the path integral representation for amplitudes,

A =
∫ ∏

i

D ϕie
iS/�, (0.1)

where the subscript i labels all relevant fields while S is the classical action of the theory
calculated with appropriate boundary conditions.

In the mid-1950s Lev Landau, Alexei Abrikosov, and Isaac Khalatnikov discovered a
feature of QED, the only respectable field theory of that time, that had a strong impact
on all further developments in QFT. They found the phenomenon of zero charge (now
usually referred to as infrared freedom): independently of the value of the bare coupling at
the ultraviolet cut-off, the observed (renormalized) interaction between electric charges at
“our” energies must vanish in the infinite cut-off limit.All other field theories known at that
time were shown to have the same behavior. On the basis of this result, Landau pronounced
quantum field theory dead [5] and called for theorists to seek alternative ways of dealing
with relativistic quantum phenomena.2 When I went to the theory department of ITEP3 in
1970 to work on my Master’s thesis, this attitude was still very much alive and studies of

2 Of course, people “secretly” continued using field theory for orientation, e.g. for extracting analytic properties
of the S-matrix amplitudes, but they did it with apologies, emphasizing that that was merely an auxiliary tool
rather than the basic framework.

3 The Institute of Theoretical and Experimental Physics in Moscow.
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3 Introduction

QFT were strongly discouraged, to put it mildly. Curiously, this was just a couple of years
before the next QFT revolution.

The renaissance of quantum field theory, its second début, occurred in the early 1970s,
when Gerhard ’t Hooft realized that non-Abelian gauge theories are renormalizable (includ-
ing those in the Higgs regime) and, then, shortly after, David Gross, Frank Wilczek, and
David Politzer discovered asymptotic freedom in such theories. Quantum chromodynamics
(QCD) was born as the theory of strong interactions. Almost simultaneously, the standard
model of fundamental interactions (SM) started taking shape. In the subsequent decade
it was fully developed and was demonstrated, with triumph, to describe all known phe-
nomenology to a record degree of precision. All fundamental interactions in nature fit into
the framework of the standard model (with the exception of quantum gravity, of which I
will say a few words later).

Thus, the gloomy prediction of the imminent demise of QFT – a wide spread opinion in
the 1960s – turned out to be completely false. In the 1970s QFT underwent a conceptual
revolution of the scale comparable with the development of renormalizable invariant pertur-
bation theory in QED in the late 1940s and early 1950s. It became clear that the Lagrangian
approach based on Eq. (0.1), while ideally suited for perturbation theory, is not necessarily
the only (and sometimes, not even the best) way of describing relativistic quantum phe-
nomena. For instance, the most efficient way of dealing with two-dimensional conformal
field theories is algebraic. In fact, many different Lagrangians can lead to the same theory
(according to Alexander Belavin, Alexander Polyakov, and Alexander Zamolodchikov, in
1981). This is an example of the QFT dualities, which occur not only in conformal theories
and not only in two dimensions. Suffice it tomention that the sine-Gordon theorywas shown
long ago to be dual to the Thiring model. Even more striking were the extensions of duality
to four dimensions. In 1994 Nathan Seiberg reported a remarkable finding: supersymmetric
Yang–Mills theories with distinct gauge groups can be dual, leading to one and the same
physics in the infrared limit!

Some QFTs were found to be integrable. Topological field theories were invented which
led mathematical physicists to new horizons in mathematics, namely, in knot theory,
Donaldson theory, and Morse theory.

The discovery of supersymmetric field theories in the early 1970s (which we will discuss
later) was a milestone of enormous proportions, a gateway to a new world, described by
QFTs of a novel type and with novel – and, quite often, – counterintuitive properties. In its

Look
through
Introduction
to Part II,
Section 44.

impact on QFT, I can compare this discovery to that of the New World in 1492. People who
ventured on a journey inside the new territory found treasures and exotic, and previously
unknown, fruits: a richness of dynamical regimes in super-Yang–Mills theories, including a
broad class of superconformal theories in four dimensions; exact results at strong coupling;
hidden symmetries and cancellations; unexpected geometries and more.

Supersymmetric theories proved to be a powerful tool, allowing one to reveal intriguing
aspects of gauge (color) dynamics at strong coupling. Continuing my analogy with Colum-
bus’s discovery ofAmerica in 1492, I can say that the expansion of QFT in the four decades
that have elapsed, since 1970 has advanced us to the interior of a new continent. Our task
is to reach, explore, and understand this continent and to try to open the ways to yet other
continents. The reader should be warned that the very nature of the frontier explorations in
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4 Introduction

QFT has changed considerably in comparison with what is found in older textbooks.Anice
characterization of this change is given by an outstanding mathematical physicist, Andrey
Losev, who writes [6]:

In the good old days, theorizing was like sailing between islands of experimental evidence.
And, if the trip was not in the vicinity of the shoreline (which was strongly recommended
for safety reasons) sailors were continuously looking forward, hoping to see land – the
sooner the better . . .

Nowadays, some theoretical physicists (let us call them sailors) [have] found a way
to survive and navigate in the open sea of pure theoretical construction. Instead of the
horizon they look at the stars,4 which tell them exactly where they are. Sailors are aware
of the fact that the stars will never tell them where the new land is, but they may tell them
their position on the globe. In this way sailors – all together – are making a map that will
at the end facilitate navigation in the sea and will help to discover new lands.

Theoreticians become sailors simply because they just like it. Young people seduced by
captains forming crews to go to a Nuevo El Dorado of Unified Quantum Field Theory or
Quantum Gravity soon realize that they will spend all their life at sea. Those who do not
like sailing desert the voyage, but for true potential sailors the sea becomes their passion.
They will probably tell the alluring and frightening truth to their students – and the proper
people will join their ranks.

Approximately at the same time as supersymmetry was born in the early-to-mid-1970s,
a number of remarkable achievements occurred in uncovering the nonperturbative side
of non-Abelian Yang–Mills theories: the discovery of extended objects such as monopoles
(G.’tHooft;A.Polyakov),domainwalls,andfluxtubes(H.NielsenandP.Olesen)and,finally,
tunneling trajectories (currently known as instantons) inEuclidean space–time (A. Polyakov
and collaborators). A microscopic theory of magnetic monopoles was developed. It took
people a few years to learn how to quantize magnetic monopoles and similar extended
objects. The quasiclassical quantization of solitons was developed by Ludwig Faddeev and
his school inSt Petersburg and, independently, byR. F.Dashen,B.Hasslacher, andA.Neveu.
Then Y. Nambu, S. Mandelstam, and G. ’t Hooft put forward (practically simultaneously
but independently) the dual Meissner effect conjecture as the mechanism responsible for
color confinement in QCD. It became absolutely clear that, unlike in QED, crucial physical
phenomena go beyond perturbation theory and field theory is capable of describing them.

The phenomenon of color confinement can be summarized as follows. The spectrum
of asymptotic states in QCD has no resemblance to the set of fields in the Lagrangian;
at the Lagrangian level one deals with quarks and gluons while experimentalists detect
pions, protons, glueballs, and other color singlet states – never quarks and gluons. Color
confinement makes colored degrees of freedom inseparable. In a bid to understand this
phenomenon Nambu, ’t Hooft, and Mandelstam suggested a non-Abelian dual Meissner
effect.According to their vision, non-Abelian monopoles condense in the vacuum, resulting
in the formation of non-Abelian chromoelectric flux tubes between color charges, e.g.
between a probe heavy quark and antiquark pair. Attempts to separate these probe quarks

4 Here by “stars” he means aspects of the internal logic organizing the mathematical world rather than outstanding
members of the community.
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5 Introduction

would lead to stretching of the flux tubes, so that the energy of the system grows linearly
with separation. That is how linear confinement was visualized.

One may ask: where did these theorists get their inspiration? The Meissner effect, known
for a long time and well understood theoretically, yielded a rather analogous picture. It
answered the question: what happens if one immerses a magnetic charge and anticharge in
a type-II superconductor?

Ifwe place a probemagnetic charge and anticharge in empty space, themagnetic field they
induce will spread throughout space, while the energy of the magnetic charge–anticharge
configuration will obey the Coulomb 1/r law. The force will die off as 1/r2. Inside the
superconductor, however, Cooper pairs condense, all electric charges are screened, and the
photon acquires a mass; i.e., according to modern terminology the electromagnetic U(1)
gauge symmetry is Higgsed. The magnetic field cannot be screened in this way; in fact, the
magnetic flux is conserved. At the same time the superconducting medium cannot tolerate
a magnetic field. This clash of contradictory requirements is solved through a compromise.
A thin tube (known as an Abrikosov vortex) is formed between the magnetic charge and
anticharge immersed in the superconducting medium. Within this tube superconductivity
is destroyed – which allows the magnetic field to spread from the charge to the anticharge
through the tube. The tube’s transverse size is proportional to the inverse photon mass while
its tension is proportional to the Cooper pair condensate. Increasing the distance between
the probe magnetic charges (as long as they are within the superconductor) does not lead
to their decoupling; rather, the magnetic flux tubes become longer, leading to linear growth
in the energy of the system.

This physical phenomenon inspired Nambu, ’t Hooft, and Mandelstam’s idea of non-
Abelian confinement as a dual Meissner effect. Many people tried to quantify this idea. The
first breakthrough, instrumental in all later developments, came only 20 years later, in the
form of the Seiberg–Witten solution of N = 2 supersymmetric Yang–Mills theory. This
theory has eight supercharges, which makes the dynamics quite “rigid” and helps one to
find the full analytic solution at low energies. The theory bears a resemblance to quantum
chromodynamics, sharing common family traits. By and large, one can characterize it as
QCD’s second cousin.

The problem of confinement in QCD per se (and in nonsupersymmetric theories in
four dimensions in general) is not yet solved. Since this problem is of such paramount
importance for the theory of strong interactions we will discuss at length instructive models
of confinement in lower dimensions.

The topics listed above have become part of “operational” knowledge in the community
of field theory practitioners. In fact, they transcend this community since many aspects
reach out to string theorists, cosmologists, astroparticle physicists, and solid state theorists.
My task is to present a coherent pedagogical introduction covering the basics of the above
subjects in order to help prepare readers to undertake research of their own.

We will start from the Higgs effect in non-Abelian gauge theories. Then we will study the
basic phases in which non-Abelian gauge theories can exist – Coulomb, conformal, Higgs,
and so on. Some “exotic” phases discovered in the context of supersymmetric theories will
not be discussed.
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6 Introduction

A significant part of this book will be devoted to topological solitons, that is, the topo-
logical defects occurring in various field theories. The term “soliton” was introduced in
the 1960s, but scientific research on solitons had started much earlier, in the nineteenth
century, when a Scottish engineer, John Scott-Russell, observed a large solitary wave in a
canal near Edinburgh. Condensed matter systems in which topological defects play a crucial
role have been well known for a long time: suffice it to mention the magnetic flux tubes in
type II superconductors and the structure of ferromagnetic materials, with domain walls at
the domain boundaries.

In 1961 Skyrme [7] was the first to introduce in particle physics a three-dimensional
topological defect solution arising in a nonlinear field theory. Currently such solitons are
known as Skyrmions. They provide a useful framework for the description of nucleons and
other baryons in multicolor QCD (in the so-called ’t Hooft limit, i.e. atNc →∞with g2Nc

fixed, where Nc is the number of colors and g2 is the gauge coupling constant).
In general, in this book we will pay much attention to the broader aspects of multicolor

gauge theories and the ’t Hooft limit. We will see that a large-N expansion is equivalent to
a topological expansion. Each term in a 1/N series is in one-to-one correspondence with a
particular topology of Feynman graphs, e.g. planar graphs, those with one handle, and so
on. Large-N analysis presents a very fruitful line of thought, allowing one to address and
answer a number of the deepest questions in gauge theories.

As early as in 1965 Nambu anticipated the cosmological significance of topological
defects [8]. He conjectured that the universe could have a kind of domain structure. Sub-
sequently Weinberg noted the possibility of domain-wall formation at a phase transition in
the early universe [9].

From the general theory of solitons we pass to a specific class of supersymmetric critical
(or Bogomol’nyi–Prasad–Sommerfield-saturated) solitons.

I will present a systematic and rather complete introduction to supersymmetry that is
(almost) sufficient for bringing students to the cutting edge in this area.

Readers shouldbewarned that nothingwill be said on thequantum theoryof gravity.There
is no consistent theory of quantum gravity. Attempts to develop such a theory led people to
the inception of critical string theory in the late 1970s. This theory builds on quantum field
theory and, it is hoped, goes beyond it. It is believed that, after its completion, string theory
will describe all fundamental interactions in nature, including quantum gravity. However,
the completion of superstring theory seems to be in the distant future. Today neither is
its mathematical structure clear nor its relevance to real-world phenomena established. A
number of encouraging indications remain in disassociated fragments. If there is a definite
lesson for us from string theory today, it is that the class of relativistic quantum phenomena
to be considered must be expanded as far as possible and that we must explore, to the fullest
extent, nonperturbative aspects in the hope of finding a path to quantum geometry, when
the time is ripe, probably with many other interesting findings en route.

Finally, a few words on the history of supersymmetry are in order.5 The history of
supersymmetry is exceptional. All other major conceptual developments in physics have
occurred because physicists were trying to understand or study some established aspect

5 For more details see [10].
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7 References for the Introduction

of nature or to solve some puzzle arising from data. The discovery in the early 1970s of
supersymmetry, that is, invariance under the interchange of fermions and bosons, was a
purely intellectual achievement, driven by the logic of theoretical development rather than
by the pressure of existing data.

The discovery of supersymmetry presents a dramatic story. In 1970 Yuri Golfand and
Evgeny Likhtman in Moscow found a superextension of Poincaré algebra and constructed
the first four-dimensional field theory with supersymmetry, the (massive) quantum elec-
trodynamics of spinors and scalars.6 Within a year Dmitry Volkov and Vladimir Akulov in
Kharkov suggested nonlinear realizations of supersymmetry and then Volkov and Soroka
started developing the foundations of supergravity. Because of the Iron Curtain which
existed between the then USSR and the rest of the world, these papers were hardly noticed.
Supersymmetry took off after the breakthrough work of Julius Wess and Bruno Zumino in
1973. Their discovery opened to the rest of the community the gates to the Superworld.
Their work on supersymmetry has become tightly woven into the fabric of contemporary
theoretical physics.

Often students ask where the name “supersymmetry” comes from. The first paper of
Wess and Zumino [11] was entitled “Supergauge transformations in four dimensions.” A
reference to supersymmetry (without any mention the word “gauge”) appeared in one of
Bruno Zumino’s early talks [12]. In the published literature Salam and Strathdee were the
first to coin the term supersymmetry. In the paper [13], in which these authors constructed
supersymmetric Yang–Mills theory, super-symmetry (with a hyphen) was in the title, while
in the body of the paper Salam and Strathdee used both the old terminology due to Wess and
Zumino, “super-gauge symmetry,” and the new one. This paperwas received by the editorial
office of Physical Letters on 6 June 1974, exactly eight months after that of Wess and
Zumino [11]. An earlier paper, of Ferrara and Zumino [14] (received by the editorial office
of Nuclear Physics on 27 May 1974),7 where the same problem of super-Yang–Mills theory
was addressed, mentions only supergauge invariance and supergauge transformations.
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PART I

BEFORE SUPERSYMMETRY
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