INDEX

1//noise 131
1 dB compression point 177
3G ADC requirements 432
3G receiver IP3 168
4G receiver IP2 172
4G receiver noise figure 149
25% duty cycle mixer 261
25% LO generation 263
50% duty cycle mixer 262
50Ω interface 113
90° phase shift 55
accumulation-mode MOS capacitor 21
active filter 51
active load (LNA) 208
active mixers 243
IP3 improvement 257
linearity 246
noise figure 253
second-order distortion 255
active polyphase filter 58
active upconversion mixers 282
active-RC 52
adaptive pre-distortion (in PAs) 396
adjacent channel leakage ratio (ACLR) 188
Adler’s differential equation 198
Adler’s modified differential equation 200
aging simulation 461
allpass network 55
all-pole transfer function 48
AM and PM decomposition 316
AM and PM sidebands 316
AM spectrum 72
AM–PM impact on constellation 194
AM–AM non-linearity 194
in polar transmitters 446
AM–PM conversion in LC oscillators 342
Ampère’s circuital law 5
amplitude modulation (AM) 70
amplitude noise 312
amplitude-modulated signal, oscillators 324
AM–PM alignment (in polar transmitters) 445
AM–PM non-linearity 195
in polar transmitters 446
analog building blocks 52
analog linear modulation 70
analog non-linear modulation 70
ATE board 462
autocorrelation 61, 62
white noise 123
automatic frequency control (crystal tuning) 369
automatic testing equipment (ATE) 450, 461
available power 89
available power gain 89, 111
average power 89
backward propagation (transmission lines) 98
band-limited white noise 173
Bank’s general result 328
bench–ATE correlation 450
Bessel functions 77, 196
Biot-Savart law 5
blockers 160
Boltzmann constant 119
boost switching converter 401
bottom plate parasitic 22
boundary conditions (transmission lines) 99
Brownian motion 119
buck switching converter 400
burn-in test 461
Butterworth polynomial 47
capacitance 4
capacitor (circuit model) 10
capacitor and inductor energy 18
carrier 69
carrier to sideband ratio in LC oscillator 324
Cartesian modulator 80
cartesian transmitter 81
cascade input–output characteristics 170
cascade of non-linear stages 170
cascode LNA noise figure 219
cascode noise (in LNA) 227
cascode power amplifiers 383
cellular network 159
central limit theorem 63, 121
CG LNA noise figure 214
characteristic impedance 13, 112
charge 2
charge device model (CDM) 461
Chebyshev filter 48
Chireix transmitter 447
choice of IF (in low-IF receivers) 420
class A
efficiency 382
PA 381
class AB 389
class B
efficiency 385
PA 384
class C
efficiency 388
LC oscillator 349
PA 387
class D
efficiency 391
PA 389
class E
matching network 392
PA 392
power capability 394
class F 394
CMOS LC oscillator 333
CMOS oscillator noise factor 335
CMOS oscillator phase noise 335
doors cable 3
coaxial cable characteristic impedance 14
colored Gaussian noise 123
Colpitts LC oscillator 335
Colpitts oscillator noise factor 337
Colpitts oscillator phase noise 337
common-gate LNA 208
common-mode resonance in NMOS oscillator 347
common-source LNA 208
complementary LNA 208
complex capacitor 57
complex power 89
conjugate matching 89
conservation of energy 19
continuity equation 10
continuous tuning 23
coupled inductor 92
coupling factor 92
crystal electrical model 365
crystal oscillator 365
stability 367
tuning 369
crystal parallel resonance 367
crystal quality factor 366
crystal, series resonance 367
CS LNA with degeneration 220
CS stage noise figure 212
current switching 243
current-mode receiver 426
current-mode switching PA 390
cyclostationary 68
cyclostationary in wide sense 68
cyclostationary noise 132
cyclostationary signal 69
DC/DC converter 399
delay line noise 356
demodulator 70
device verification and testing (DVT) 449
differential inductor 30
differential LNA 229
differential two-port 113
digital pre-distortion (in PAs) 396
diode-ring mixer 240
direct-conversion transmitter 435
direct-modulated PLL 440
discrete tuning 24
displacement current 9
distributed active transformer 386
distributed circuit 12
Doherty PA 404
Doherty PA realization 405
double-balance mixer 244
double-terminated filter 90
double-tuned circuit 92
downconversion mixer 239
drain efficiency 381
dual-conversion receiver 424
dual-conversion transmitter 437
dual-gate layout 227
duplexer 162
dynamic biasing (in PAs) 403
dynamic range 176
EER-based transmitter linearity 398
effective conductance in LC oscillators 311
effective LO signal 267
eight-phase mixer 265
electric field intensity 2
electric flux density 2
electric potential 3
electromotive force 8
electrostatic discharge (ESD) 461
electrostatic energy 14
elliptic filter 48
energy balance in LC oscillator 327
energy decay rate 18
energy per degree of freedom 121
energy storage capability 91
envelope tracking (in PA) 399
envelope elimination and restoration (EER) 398
equipartition law 119
equivalent noise bandwidth 124
equivalent noiseless two-port 135
ergodic 63
erogodicity 67
error vector magnitude (EVM) 190
fading 159
Faraday’s law 9
far-out noise (in direct-conversion transmitters) 436
feedback (feedforward) linearization in PAs 396
feedback divider (in PLLs) 370
feedback LNA 207, 223
feed-through in active mixers 244
figure of merit in LC oscillators 307
filter 45
filter step response 50
filtered white noise 123
fine ball grid array (FPGA) package 458
finite Q (of active filter) 53
fixed capacitor 21
flicker noise 131
flux linkage 11
FM and PM noise 314
FM bandwidth 78
FM modulator 78
forward and backward propagation 13
forward propagation (transmission lines) 98
four-phase RC filter 57
Fourier coefficients 40
Fourier series 40
Fourier transform 39
four-quadrant analog multiplier 241
frequency division multiple access (FDMA) 192
frequency modulator 75
frequency modulation in LC oscillators 345
frequency noise 312
frequency translation 239
Friis equation 146
fringe capacitor 23
fringe fields 22
full-duplex division (FDD) 162
gain control 178
gain method noise measurement 152
gate resistance (in LNA) 226
gauge R&R 464
GaAs’s law 2
Gaussian (or normal) 63, 123
Gilbert mixer, 241
Gilbert multiplier 243
Gilbert-C 52
Groszkowski effect 344
growing or decaying oscillation 304
GSM 149
GSM ADC requirements 431
GSM blocker profile 160
GSM transmitter 439
half-IF blocker 183
hard switching mixers 183
harmonic blockers 183
harmonic distortion 164
rejection mixers 183
suppression 265
Hartley image-reject receiver 420
hexagon or octagon inductor 26
high-side injection 183
Hilbert transform 55, 79
AM 74
in low-IF receivers 420
in zero-IF receivers 417
hollow inductor 27
human body model (HBM) ESD 461
I and Q imbalance in direct-conversion transmitters 436
in zero-IF receivers 418
ideal filter 45, 46
ideal filter rise time 51
ideal LC oscillator 303
IP2 of cascade of non-linear stages 171
image blocker 183
image rejection in heterodyne receivers 414
image rejection ratio (in low-IF receivers) 420
impact of feedback on non-linearity 174
impulse 41
in-band blockers 160
incident wave 107
inductance 6
matrix 92
of a wire 25
inductor (circuit model) 10
inductor model 31
input FET second-order non-linearity 256
input FET noise in active mixers 247
input FET noise spectral density 252
input-referred noise current 135
input-referred noise voltage 135
input impedance transformation 90
input return loss 213
instantaneous angle 75
instantaneous spectral density 132
integrated transformer model 92
interferers 160
inter-modulation 164
inverter delay in ring oscillators 352
inverter phase noise in ring oscillators 357
inverter-based oscillator 350
Johnson (Nyquist) noise 119
KCL 11
KVL 3
ladder circuit 48
ladder network 44
LC circuits 16
LC circuit energy 17
LC oscillator Q degradation 340
Leeson’s equation 148, 306, 326
Leeson’s model 304
Lenz’s law 9, 11
limitations (of active filter) 52
linear capacitor 22
linear feedback model (Leeson’s) 304
linear LC oscillator 303
linear oscillator feedback model 303
LNA biasing 229
design tradeoffs 231
gain control 230
linearity 229
second-order distortion 230
LNA topologies summary 225
LNA/mixer case study 289
LNA/mixer design approach 295
LNTA 259
LO feed-through 191
in direct-conversion transmitters 436
LO harmonics 183
LO overlap in mixers 264
LO self-mixing (in zero-IF receivers) 418
load noise in active mixers 247
local area network (LAN) 184
local shunt feedback LNA 216
loop filter (in PLLs) 370
lorentzian 131
lossless matching network 204
lossless transmission line 98
lossy LC circuits 17
lossy resonator 303
lossy substrate 28
low and high-side mixer gain 274
low-IF receiver 419
low-loss propagation 112
lowpass to bandpass transformation 48, 57
low-side injection 183
lumped circuit 12
machine model (MM) ESD 461
magnetic energy 14
magnetic field 4
intensity 5
magnetic flux 6
density 6
magnetic loss 29
magnetic reluctance 91
matching network 90, 95
filtering 96
gain 96
in PAs 380
noise spectral density 204
MAX hold measurement 193
maximum conversion gain in passive mixers 273
maximum power delivery 113
maximum power transfer 90
in PAs 380
Maxwell’s equations 9
Maxwell–Boltzmann statistics 120
memory-less non-linear systems 195
metal shield 29
metal spiral 25
MIM capacitor 23
minimum detectable signal 148
minimum noise figure 141
mixer impedance transformation 270
mixer-first receiver 428
noise figure 428
mixer performance summary 280
modulated spectrum 70
modulating function (cyclostationary noise) 133
modulation 65
modulation index 77
monolithic inductor 25
MOS capacitor 21
Gilbert mixer 244
input-referred noise 136
varactor 24
MOSFET noise 128, 130
multi-phase mixers 266
multi-stacked inductor 28
multi-turn inductor 27
mutual inductance 7
mutual inductance of filamentary lines 27
narrowband 93
modulation 77
transformer 97
native layer 29
negative resistance in LC oscillators 309
network function 42
NMOS in n-well 23
LC oscillator 330
oscillator noise factor 332
oscillator phase noise 332
noise cancellation 224
noise cancelling LNA noise figure 225
denoising receiver 428
noise figure 138
3 dB barrier 213
circles 141
of degenerated CS LNA 221
feedback impact 144
measurement 152
passive lossy circuit 140
single FET 139
SSB vs. DSB 252
two-port input-referred noise 138
versus S11 214
noise floor 176
noise matching 142
noise properties (of active filter) 54
noise variance 122
non-linear capacitance in LC oscillators 342
non-linear LC oscillator 309
non-linear modulation 75
Nyquist theorem 125
dual of 126
ohmic loss (of inductor) 28
on/off switch 258
one-port 87
optimum load impedance in passive mixers 273
optimum noise impedance 141
optimum source impedance 207
oscillation amplitude 312
out-of-band blockers 160
outphasing transmitter 447
overlapping clocks in mixers 260
PA efficiency (in polar transmitters) 441
package design 458
parallel inductors 29
parallel to series transformation 93
parallel-mode crystal oscillator 368
Parseval's energy theorem 40
partial fraction expansion 44
passive ladder structure 51
passive lossy circuit noise 124
passive mixers 243, 258
input impedance 270
linearity 276
noise 275
operation 268
second-order distortion 277
passive upconversion mixers 284
peak-to-average ratio (PAPR) 188, 399
permeability 6
permittivity 2
phase constant (transmission lines) 98
receiver detector 370
error 190
modulation (PM) 75
noise 147
noise definition 305
reversal (FM) 77
velocity (transmission lines) 98
phase-locked loops (PLL) 370
phase-modulated signal, oscillators 324
Pierce crystal oscillator 369
Planck constant 121
PLL critically damped response 372
in-band noise 190
phase noise 373
phase noise, loop filter 373
transfer function 371
PM modulator 81
polar modulator 80
polar transmitter 441
pole 43
polynomial filter approximation 47
polyphase filter 56
null 58
positive/negative frequencies 56
power added efficiency 381
combining (in PAs) 386
conservation 108
efficiency in oscillators 307, 329
matched 89
spectral density 63
practical integrator 52
pre-distortion (in PAs) 396
probability density function 60
propagation velocity 13
pulling 198
in direct-conversion transmitters 198, 436
impact on EVM 200
impact on LC oscillators 198
impact on modulation mask 200
quadrature
generation 56
inaccuracy of quadrature oscillators 363
LO (in zero-IF receivers) 415
LO signal 360
oscillator 360
oscillator model 362
oscillator phase noise 364
phase shifter 74
receivers 417
signals 55, 58
quality factor 17, 18
random variable 60
randomly phased sinusoid 61
receiver
ADC requirements 431
available filtering 431
block diagram 413
gain control 434
receiver-band noise 186
reciprocal mixing 181
reciprocity (noise) 125
rectangular pulse 39
redistribution layer (RDL) 458
reflection wave 95, 107
reflection coefficient 100, 102, 106
RF self mixing in mixers 255
RF-LO feed-through in passive mixers 277
ring oscillators 350
figure of merit 360
noise model 355
phase noise 357
rising and falling edge noise (ring oscillators) 356
S matrix 106
SAW filter 90
scattering matrix 106
second-order distortion (in zero-IF receivers) 418
second-order input intercept point (IIP2) 171
second-order non-linearity 171
self-resonance frequency 28
sensitivity 149
series feedback LNA 220
series tank (switching PAs) 390
series-mode crystal oscillator 368
shifting process 69
short circuited stub 105
shunt and series feedback LNA 207
shunt feedback noise equation 217
signal energy 39
signal flow graph 51
cinc function 39
single-balanced mixer 246
single-sideband AM 73
single-sideband AM modulator 79
skin depth 26
skin effect 25
sliding IF receiver 425
Smith chart 102
SNR degradation (due to IQ imbalance in zero-IF receivers) 418
software-defined radio 412
solenoid 7
spectral asymmetry, AM–PM impact on 196
spectral density (cyclostationary noise) 133
spectrum 39
spiral 26
spot noise figure 152
spurious free dynamic range 176
standing wave 100
stationary in wide-sense 62
stationary process 62
stochastic processes 60
substrate 23
substrate noise (in LNA) 228
super-heterodyne receiver 414
supply pushing in LC oscillators 345
suppressed-carrier double-sideband modulation (DSB) 70, 72
switch noise direct effect 248
switch noise in active mixers 247
switch noise indirect mechanism 250
switched capacitor 52
switching spectrum 193
symmetric negative/positive frequency 57
system-on-a-chip 456
Taylor series (IIP3) 167
terminated transmission line 100
thermal noise 119, 121
thermal resistor 123
third-order distortion, AM–PM impact on 197
third-order input intercept point (IIP3) 165
single FET 167
third-order non-linearity 163
time division multiple access (TDMA) 192
time domain filter response 50
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>time varying field</td>
<td>8</td>
</tr>
<tr>
<td>time-domain mask</td>
<td>193</td>
</tr>
<tr>
<td>time-duplex division (TDD)</td>
<td>162</td>
</tr>
<tr>
<td>time-variance, mixers</td>
<td>240</td>
</tr>
<tr>
<td>time-varying conductance</td>
<td>134</td>
</tr>
<tr>
<td>transceiver practical issues</td>
<td>449</td>
</tr>
<tr>
<td>transconductance device flicker noise</td>
<td>249</td>
</tr>
<tr>
<td>transformer</td>
<td>31, 91</td>
</tr>
<tr>
<td>transimpedance amplifier (TIA)</td>
<td>259</td>
</tr>
<tr>
<td>translational loops</td>
<td>439</td>
</tr>
<tr>
<td>transmission line</td>
<td>12, 98</td>
</tr>
<tr>
<td>transmission line loss</td>
<td>111</td>
</tr>
<tr>
<td>transmitter</td>
<td></td>
</tr>
<tr>
<td>leakage</td>
<td>169</td>
</tr>
<tr>
<td>mask</td>
<td>184</td>
</tr>
<tr>
<td>mask (LO phase noise)</td>
<td>185</td>
</tr>
<tr>
<td>mixer performance analysis</td>
<td>285</td>
</tr>
<tr>
<td>mixer third harmonic issue</td>
<td>287</td>
</tr>
<tr>
<td>non-linearity</td>
<td>187</td>
</tr>
<tr>
<td>transmitter output power</td>
<td>184</td>
</tr>
<tr>
<td>traveling wave</td>
<td>100</td>
</tr>
<tr>
<td>tuned load</td>
<td>211</td>
</tr>
<tr>
<td>tuning range of LC oscillators</td>
<td>338</td>
</tr>
<tr>
<td>two-phase mixer</td>
<td>264</td>
</tr>
<tr>
<td>two-port</td>
<td>87</td>
</tr>
<tr>
<td>two-tone blocker</td>
<td>166</td>
</tr>
<tr>
<td>type-II PLL</td>
<td>372</td>
</tr>
<tr>
<td>types of noise</td>
<td>119</td>
</tr>
<tr>
<td>ultra-thick metal layer</td>
<td>22</td>
</tr>
<tr>
<td>upconversion mixer</td>
<td>240, 281</td>
</tr>
<tr>
<td>linearity</td>
<td>287</td>
</tr>
<tr>
<td>voltage standing wave ratio (VSWR)</td>
<td>101</td>
</tr>
<tr>
<td>voltage-mode passive mixers</td>
<td>279</td>
</tr>
<tr>
<td>voltage-mode switching PAs</td>
<td>390</td>
</tr>
<tr>
<td>wafer acceptance test (WAT)</td>
<td>460</td>
</tr>
<tr>
<td>wafer level chip scale (WCSP) package</td>
<td>458</td>
</tr>
<tr>
<td>wave equation</td>
<td>98</td>
</tr>
<tr>
<td>wave propagation</td>
<td>10</td>
</tr>
<tr>
<td>wavelength</td>
<td>12</td>
</tr>
<tr>
<td>Weaver image-reject receiver</td>
<td>423</td>
</tr>
<tr>
<td>Weaver receiver second image</td>
<td>424</td>
</tr>
<tr>
<td>white noise</td>
<td>123</td>
</tr>
<tr>
<td>white noise in active mixers</td>
<td>250</td>
</tr>
<tr>
<td>wideband impedance transformation</td>
<td>93</td>
</tr>
<tr>
<td>Wiener–Khinchin theorem</td>
<td>64</td>
</tr>
<tr>
<td>Wilkinson power combiner</td>
<td>386</td>
</tr>
<tr>
<td>Y-factor noise measurement</td>
<td>153</td>
</tr>
<tr>
<td>yield</td>
<td>461</td>
</tr>
<tr>
<td>zero (transfer function)</td>
<td>44, 48</td>
</tr>
<tr>
<td>zero-IF receiver</td>
<td>415</td>
</tr>
<tr>
<td>zero-IF signal detection</td>
<td>417</td>
</tr>
</tbody>
</table>