
1 Introduction

1.1 Why FDTD?

With the continued growth of computing power, modeling and numerical simulation has
grown immensely as a tool for understanding and analyzing just about any problem in
science. Where in the mid-twentieth century, detailed analyses were required to get any
meaningful insight out of complex problems, today we can simply plug the governing
differential equations into a computer, the results of which can provide an immense
amount of information, which is of course complementary to theoretical analyses. The
growth of computing power has brought with it a smorgasbord of modeling methods,
applicable in any number of fields. The problem, then, is knowing when to use which
method.

In electromagnetic problems, which are of interest to us in this book, there are quite a
number of useful numerical methods, including the Method of Moments, Finite Volume
methods, Finite Element methods, and Spectral methods, just to name a few. The FDTD
method, however, grew to become the method of choice in the 1990s, for a number
of reasons. First, it has always had the advantage of being a very simple method; we
shall see in Chapter 3 that the derivation of difference equations is very straightforward.
However, before the 1990s, the FDTD method was hindered by the need to discretize
the simulation space on sub-wavelength scales, with time steps commensurately small.
Hence, any reasonable problem would require a large amount of computer memory and
time. Since the 1990s, however, with the growth of computing power, the FDTD method
has taken off.

As an example, a typical 3D problem would require, at minimum, 100 grid cells
in each dimension, or 106 grid cells total. With a minimum of six fields to compute
(three components each of the electric field � and magnetic field �), and 2 bytes per
value (for 16-bit resolution), we require 12 MB of memory. As for computation time, our
simulation might require 1,000 time steps. Each of six equations will have four additions
and two multiplications (at minimum, for the free-space algorithm in Chapter 4) at each
of the 1 million grid cells, for ∼36 billion operations over the time of our simulation. In
1990, 12 MB of memory and 36 billion operations was a significant calculation; today,
you could quite easily run this simulation on your mobile phone.1

1 More accurately, this simulation used 48 MB on a desktop PC running Matlab, since it stored the arrays at
8-byte doubles; and it ran 1,000 time steps in under 5 minutes.
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2 Introduction

The advantages of the FDTD method over other methods include:

� Short development time. Thanks to the simple discretization process, a realistic 2D
or 3D simulation can be written in only a few minutes in less than 100 lines of code.
In other methods, such as the Finite Element method, creating the numerical grid
alone can require entire software packages, and understanding of the discretization
procedure can be quite convoluted.

� Ease of understanding. Again, thanks to the simple discretization procedure, the
FDTD method is easily understandable and directly follows from the differential form
of Maxwell’s equations. The stability and dispersion characteristics of the method also
follow from a simple, intuitive understanding of the updating procedure.

� Explicit nature. In the traditional explicit FDTD method, no linear algebra or matrix
inversions are required, and as such there is no inherent limit to the size of a simulation;
computer time is the only limitation.

However, there are also a number of disadvantages of the FDTD method:

� Stair-stepping edges. The orthogonal grid structure of the FDTD method implies that
edges of structures within the simulation have edges that follow the grid structure.
This can become a problem for curved surfaces, for which greater accuracy is sought.
Some methods for FDTD have been developed to overcome this limitation, including
the subcell structures discussed in Chapter 12, but other methods are generally better
suited to these complex geometries.

� Computational time. In the FDTD method, the time step at which we advance the
solution is limited by the spatial size, and cannot be larger than a certain maximum
size, as we will derive in Chapter 5. For simulations with large spaces or multiple
scales (largely varying wavelengths), this means the simulation must be run for a very
long time. Other methods can often be better at dealing with multiscale problems.

1.2 Other methods

This book covers the FDTD method in detail, with little coverage of other methods.
As mentioned above, this is due to the increasing prevalence of the FDTD method
in electromagnetic problems. However, any good engineer or scientist should have a
good understanding of other available methods, and should develop knowledge of the
appropriate conditions under which different methods are used. Here we provide a brief
mention of some other methods commonly used in electromagnetic problems.

1.2.1 Finite volume time domain

The Finite Volume Time Domain (FVTD) method became popular in modeling elec-
tromagnetic problems due to its flexibility in modeling irregular structures [1, 2]. As
we will see throughout this book, the FDTD method is somewhat restricted to regular,
structured grids, and any curved surfaces become “staircased” when the discretized grid
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1.2 Other methods 3

is formulated. We will see in Chapter 15 that FDTD methods can be developed around
irregular grids; however, the FVTD method is another way of working around irregular
structures.

In short, the FVTD method defines the fields � and � in small volumes of space,
rather than at the nodes of grid cells as in the FDTD method. These small volumes
can be arbitrarily defined, but are typically taken to be tetrahedra in 3D or triangles in
2D. These shapes simplify the resulting equations and can be designed around curved
and complex structures quite well. The FVTD method then uses the integral forms of
Maxwell’s equations to conserve the field quantities. For example, in a small volume Ve

with surface area Ae, any change in the electric or magnetic flux inside the volume from
one time step to the next must be balanced by the flux moving across the boundary area
Ae, which moves into (or out of) the adjacent cells.

An introduction to the Finite Volume method for electromagnetics is provided in
the book by S. Rao [3], and we will introduce it in some detail in Chapter 15. The
method has the obvious advantage that irregular structures can be modeled quite easily.
The simulation time is typically very similar to the FDTD method. Disadvantages
include the need to create and define an irregular grid of tetrahedral cells, which is quite
cumbersome outside of commercial software.

1.2.2 Finite difference frequency domain

Time domain methods such as FDTD are extremely useful when a transient or broadband
analysis is required. For example, we may be interested in the scattering pattern of a
broadband pulse of energy from a particular scatterer. However, in cases where a steady-
state solution is sought only at a single frequency, the FDTD method is rather inefficient.
Instead, frequency domain methods can be much more efficient, since they avoid the
need to step in time.

The Finite Difference Frequency Domain (FDFD) method is highly applicable, since
it maintains the spatial features of the FDTD method, but removes time stepping. Rather,
the steady-state solution is found at a single frequency through a matrix inversion process.
We will briefly introduce the FDFD method in Chapter 14.

The FDFD method has the additional advantage that dispersive materials become
trivial to implement. As we shall see in Chapter 10, dispersive materials in the FDTD
method require either convolution terms or auxiliary equations. In the FDFD method,
one simply uses the scalar (or vector, in the case of anisotropic dispersive materials)
values of ε, µ, and σ at the frequency of interest.

Particular problems that are better suited to FDFD are those where the solution is
required at only a single frequency. For example, mobile communications typically
operate in a narrow bandwidth around a carrier frequency, so that the bandwidth can
be approximated by a single frequency. However, the FDFD method can also be used
for broadband simulations, by running multiple simulations, one at each frequency of
interest. In this way the spectral response of a problem can be determined, with the
frequency resolution limited only by the number of simulations one is willing to run.
This can be useful for problems involving dispersive media, whose material parameters
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4 Introduction

vary with frequency in a way that cannot be easily modeled in FDTD. In Chapter 10 we
will discuss modeling of dispersive materials in the FDTD method, where methods have
been derived for some typical dispersion characteristics.

1.2.3 Finite element methods

The finite element method has become prominent in electromagnetic problems in the past
decade or so, but has been around much longer than that, having originated in the 1940s
with the work of A. Hrennikoff and R. Courant2 [4]. The finite element method (often
known as Finite Element Analysis or FEA) was developed in the 1950s for airframe and
structural analysis.

Like the finite volume method, the finite element method divides the simulation
space into small areas or volumes (in 2D and 3D, respectively) which can be arbitrarily
shaped and oriented; for this reason, the finite element method is well suited to problems
with complex geometry. Also similar to the finite volume method, while the small
“subdomains” can have arbitrary shapes, triangles and tetrahedra are most commonly
used for their simplicity.

Now, in each of the other methods we have discussed so far, Maxwell’s equations are
discretized and values of the fields are found which satisfy these equations. In the finite
element method, however, the solution to Maxwell’s equations is approximated over each
subdomain with some functional form, usually a low-order polynomial, which is known
as a basis function. The solutions in each subdomain are then made to be continuous
across their boundaries, and the solution must be made to fit with the global boundary
conditions enforced by any scattering structures.

The finite element method in electromagnetics has the disadvantage of being rather
complicated, and as such we will provide only a brief introduction to the method in
Chapter 15. However, Finite Element Time Domain (FETD) is the state-of-the-art for
time domain solutions of electromagnetic problems. Many books have been written on
the method, and we refer the reader to those books in Chapter 15.

Discontinuous Galerkin methods
One of the drawbacks of the finite element method in electromagnetic problems is that it
requires some level of global knowledge of the simulation space. The basis functions used
are local, defined in each grid element, but to enforce continuity at element boundaries,
a large, sparse matrix must be solved, which can heavily increase the computational cost.

More recently, discontinuous Galerkin methods have moved to the forefront of electro-
magnetic simulation. These methods enforce strict locality by relaxing the requirement
of continuity between elements. Discontinuous Galerkin methods borrow ideas from
finite volume methods to connect elements together at their boundaries, and result in
explicit, local, and highly accurate algorithms. We will provide a brief introduction to
discontinous Galerkin methods in Section 15.4.

2 The same Courant for whom the Courant-Friedrichs-Lewy (CFL) condition in FDTD is named.
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1.3 Organization 5

1.2.4 Spectral methods

In each of the methods described above, the discretization of space requires on the order
of 10 or more grid cells per wavelength, for the smallest wavelength in the simulation,
in order to achieve reasonable accuracy in the results. As we have mentioned, for large
problems or multiscale problems, this restriction becomes cumbersome and leads to long
simulation times. Spectral methods take advantage of the Nyquist theorem, which states
that only two points are needed per wavelength to perfectly reconstruct a wave; indeed,
spectral methods have been shown to require only two grid cells per wavelength.

In spectral methods, the simulation space is broken into grid cells as usual, but
the solution at a given time step is approximated by a function covering the entire
simulation space; the methods are “spectral” because the functional form is usually
a Fourier decomposition. This type of spectral method is very similar, in fact, to the
finite element method; the primary difference is that the finite element method is local:
the functional forms are assumed to be piecewise continuous over small subdomains;
whereas the spectral methods are global, where the functional forms cover the entire
simulation space. The largest frequency used in the Fourier representation of the solution
defines the smallest wavelength, and in turn the grid cell size.

The spectral method of choice in recent years for time domain simulations of
Maxwell’s equations has been the Pseudospectral Time Domain (PSTD) method. In
this method, the spatial derivatives are approximated by taking the Fast Fourier Trans-
form (FFT) of the spatial distribution of fields along an axis; multiplying by jk to
achieve the spatial derivative; then taking the inverse FFT to get back to the spatial
domain. These spatial derivatives are then used directly in the update equations, and
time marching proceeds as in the FDTD method.

These methods provide the stated advantage that a far more coarse grid is required;
similar accuracy can be achieved compared to the FDTD method for considerably fewer
grid cells. Liu [5, 6] reports a reduction in computer storage and time of a factor of
8D , where D is the dimensionality, compared to the FDTD algorithm. The costs of the
PSTD methods are a slightly stricter stability criterion (by a factor of π/2) and slightly
increased numerical dispersion.

In the interest of brevity, we will not provide a detailed overview of spectral methods
or the PSTD method in this book. The interested reader is referred to Chapter 17 of
[7] for a good overview of PSTD methods, and the book by Hesthaven et al. [8] for an
introduction to spectral methods for time-domain problems.

1.3 Organization

This book is intended to be used as a teaching tool, and has thus been written in the
order that we feel is most appropriate for a one-semester course on the FDTD method.
The book can be thought of as loosely organized into three sections.

Chapters 2 to 6 introduce the basics required to create, and understand, a simple
FDTD problem. Chapter 2 provides a review of Maxwell’s equations and the elements
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6 Introduction

of electromagnetic theory that are essential to understanding the FDTD method, and
numerical electromagnetics in general. Chapter 3 describes the methods by which par-
tial differential equations (PDEs) are discretized and transformed into finite difference
equations (FDEs). The Yee cell and the FDTD algorithm are introduced in Chapter 4, in
one, two, and three dimensions, as well as in other coordinate systems and in lossy mater-
ials. The stability and accuracy of the FDTD method are discussed in Chapters 5 and
6, respectively. An understanding of the accuracy of an FDTD simulation is extremely
crucial; too often modelers simply run a simulation for stability, and ignore the loss of
accuracy that comes with many of the inherent assumptions.

Chapters 7 to 11 provide the next level of understanding required for FDTD simula-
tions. Chapter 7 describes methods by which sources are introduced into the simulation,
including the total-field / scattered-field formulation. Chapter 8 introduces some ana-
lytical boundary conditions, used to absorb fields at the edge of the simulation space.
While these methods are introduced partially for historical and mathematical interest,
in many cases they are still the best choice in certain scenarios. The perfectly matched
layer (PML) boundary condition is discussed in Chapter 9; the PML is the state of the art
in absorbing boundary conditions. Chapter 10 describes methods for simulating wave
propagation in dispersive (frequency-dependent) materials, and Chapter 11 describes
the FDTD method in anisotropic materials, including materials that are both dispersive
and anisotropic.

Chapters 12 to 15 introduce some more advanced topics. We have chosen topics that
should be of interest to the general audience, rather than choosing particular applica-
tions. Chapter 12 describes a variety of topics, including modeling periodic structures;
modeling structures that are smaller than the grid cell size; the bodies of revolution
(BOR) method for modeling cylindrical structures; and the near-to-far field trans-
formation for calculating the far-field pattern of a scattering or radiation problem.
Chapter 13 introduces implicit FDTD methods, which circumvent the stability
restriction of the classic explicit method. The finite difference frequency domain
method, mentioned briefly above, is introduced in some detail in Chapter 14. Finally,
Chapter 15 provides an overview of nonuniform, nonorthogonal, and irregular grids,
which can be used to improve accuracy and efficiency near complex structures, as well
as brief introductions to the finite volume, finite element, and discontinuous Galerkin
methods for electromagnetics.
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2 Review of electromagnetic theory

A study of Numerical Electromagnetics must rely on a firm base of knowledge in
the foundations of electromagnetics as stated in Maxwell’s equations. Accordingly, we
undertake in this chapter a review of Maxwell’s equations and associated boundary
conditions.

All classical electromagnetic phenomena are governed by a compact and elegant set
of fundamental rules known as Maxwell’s equations. This set of four coupled partial
differential equations was put forth as the complete classical theory of electromagnetics
in a series of brilliant papers1 written by James Clerk Maxwell between 1856 and 1865,
culminating in his classic paper [2]. In this work, Maxwell provided a mathematical
framework for Faraday’s primarily experimental results, clearly elucidated the different
behavior of conductors and insulators under the influence of fields, imagined and intro-
duced the concept of displacement current [3, Sec. 7.4], and inferred the electromagnetic
nature of light. A most fundamental prediction of this theoretical framework is the exis-
tence of electromagnetic waves, a conclusion to which Maxwell arrived in the absence
of experimental evidence that such waves can exist and propagate through empty space.
His bold hypotheses were to be confirmed 23 years later (in 1887) in the experiments of
Heinrich Hertz [4].2

When most of classical physics was fundamentally revised as a result of Einstein’s
introduction [6]3 of the special theory of relativity, Maxwell’s equations remained intact.4

To this day, they stand as the most general mathematical statements of fundamental natu-
ral laws which govern all of classical electrodynamics. The basic justification and validity
of Maxwell’s equations lie in their consistency with physical experiments over the entire
range of the experimentally observed electromagnetic spectrum, extending from cosmic
rays at frequencies greater than 1022 Hz to the so-called micropulsations at frequencies of
about 10−3 Hz. The associated practical applications cover an equally wide range, from
the use of gamma rays (1018 – 1022 Hz) for cancer therapy to use of waves at frequencies

1 For an excellent account with passages quoted from Maxwell’s papers, see [1, Ch. 5].
2 For a collected English translation of this and other papers by H. Hertz, see [5].
3 The English translation of [6] is remarkably readable and is available in a collection of original papers [7].
4 Maxwell’s formulation was in fact one of the major motivating factors which led to the development of

the theory of special relativity. The fact that Galilean relativity was consistent with classical mechanics but
inconsistent with electromagnetic theory suggested either that Maxwell’s equations were incorrect or that
the laws of mechanics needed to be modified. For discussions of the relationship between electromagnetism
and the special theory of relativity, see [8, Sec. 15]; [9, Ch. 10]; [1, Ch. 2]; [10, Ch. 11].
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Review of electromagnetic theory 9

of a few Hz and below for geophysical prospecting. Electromagnetic wave theory as
embodied in Maxwell’s equations has provided the underpinning for the development of
many vital practical tools of our technological society, including broadcast radio, radar,
television, cellular phones, optical communications, Global Positioning Systems (GPS),
microwave heating and processing, X-ray imaging, and numerous others.

We now continue with a brief review of Maxwell’s equations [11, pp. 247–262]
and their underlying foundations. Maxwell’s equations are based on experimentally
established facts, namely Coulomb’s law, which states that electric charges attract or
repel one another in a manner inversely proportional to the square of the distance
between them [12, p. 569]; Ampère’s law, which states that current-carrying wires create
magnetic fields and exert forces on one another, with the amplitude of the magnetic
field (and thus force) depending on the inverse square of the distance [13]; Faraday’s
law, which states that magnetic fields which vary with time induce electromotive force
or electric field [14, pp. 1–109]; and the principle of conservation of electric charge.
Discussion of the experimental bases of Maxwell’s equations is available elsewhere.5 The
validity of Maxwell’s equations is based on their consistency with all of our experimental
knowledge to date concerning electromagnetic phenomena. The physical meaning of the
equations is better perceived in the context of their integral forms, which are listed below
together with their differential counterparts:

1. Faraday’s law is based on the experimental fact that time-changing magnetic flux
induces electromotive force:

∮
C

� · dl = −
∫

S

∂�

∂t
· ds ∇ × � = −∂�

∂t
, (2.1)

where the contour C is that which encloses the surface S, and where the sense of the
line integration over the contour C (i.e., direction of dl) must be consistent with the
direction of the surface vector ds in accordance with the right-hand rule.

2. Gauss’s law is a mathematical expression of the experimental fact that electric charges
attract or repel one another with a force inversely proportional to the square of the
distance between them (i.e., Coulomb’s law):

∮
S

� · ds =
∫

V
ρ̃ dv ∇ · � = ρ̃, (2.2)

where the surface S encloses the volume V . The volume charge density is represented
with ρ̃ to distinguish it from its phasor form ρ used in the time-harmonic version of
Maxwell’s equations.

3. Maxwell’s third equation is a generalization of Ampère’s law, which states that the
line integral of the magnetic field over any closed contour must equal the total current

5 Numerous books on fundamental electromagnetics have extensive discussion of Coulomb’s law, Ampère’s
law, Faraday’s law, and Maxwell’s equations. For a recent reference that provides a physical and experimen-
tally based point of view, see [3, Ch. 4–7].

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19069-5 - Numerical Electromagnetics: The FDTD Method
Umran S. Inan and Robert A. Marshall
Excerpt
More information

http://www.cambridge.org/9780521190695
http://www.cambridge.org
http://www.cambridge.org


10 Review of electromagnetic theory

enclosed by that contour:
∮

C
� · dl =

∫
S

� · ds +
∫

S

∂�

∂t
· ds ∇ × � = � + ∂�

∂t
, (2.3)

where the contour C is that which encloses the surface S, and � is the electrical
current density (see below). Maxwell’s third equation expresses the fact that time-
varying electric fields produce magnetic fields. This equation with only the first term
on the right-hand side (also referred to as the conduction-current term) is Ampère’s
law, which is a mathematical statement of the experimental findings of Oersted,
whereas the second term, known as the displacement-current term, was introduced
theoretically by Maxwell in 1862 and verified experimentally many years later (1888)
in Hertz’s experiments [4].

4. Maxwell’s fourth equation is based on the fact that there are no magnetic charges
(i.e., magnetic monopoles) and that, therefore, magnetic field lines always close on
themselves: ∮

S
� · ds = 0 ∇ · � = 0, (2.4)

where the surface S encloses the volume V . This equation can actually be derived
[3, Sec. 6.5–6.7] from the Biot-Savart law, so it is not completely independent.6

The continuity equation, which expresses the principle of conservation of charge in
differential form, is contained in Maxwell’s Equations and in fact can be readily derived
by taking the divergence of Equation (2.3) and using Equation (2.2). For the sake of
completeness, we give the integral and differential forms of the continuity equation:

−
∮

S
� · ds = ∂

∂t

∫
V

ρ̃ dv ∇ · � = −∂ρ̃

∂t
, (2.5)

where the surface S encloses the volume V . The fact that the continuity equation can
be derived from Equations (2.2) and (2.3) indicates that Maxwell’s Equations (2.2) and
(2.3) are not entirely independent, if we accept conservation of electric charge as a fact;
i.e., using Equations (2.3) and (2.5), one can derive Equation (2.2).

Note that for all of the Equations (2.1) through (2.5), the differential forms can be
derived from the integral forms (or vice versa) by using either Stokes’s or the divergence

6 Note that Equation (2.4) can be derived from Equation (2.1) by taking the divergence of the latter and using
the vector identity of ∇ · (∇ × �) ≡ 0, which is true for any vector �. We find

∇ · (∇ × �) = −∇ ·
(

∂�

∂t

)
→ 0 = − ∂(∇ · �)

∂t
→ const. = ∇ · �

The constant can then be shown to be zero by the following argument. If we suppose that the � field was
produced a finite time ago, i.e., it has not always existed, then, if we go back far enough in time, we have
� = 0 and therefore ∇ · � = 0. Hence it would appear that

∇ · � = 0 and

∮
S

� · ds = 0
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