Introduction to Medical Imaging
Physics, Engineering and Clinical Applications

Covering the basics of X-rays, CT, PET, nuclear medicine, ultrasound and MRI, this textbook provides senior undergraduate and beginning graduate students with a broad introduction to medical imaging. Over 130 end-of-chapter exercises are included, in addition to solved example problems, which enable students to master the theory as well as providing them with the tools needed to solve more difficult problems. The basic theory, instrumentation and state-of-the-art techniques and applications are covered, bringing students immediately up-to-date with recent developments, such as combined computed tomography/positron emission tomography, multi-slice CT, four-dimensional ultrasound and parallel imaging MR technology. Clinical examples provide practical applications of physics and engineering knowledge to medicine. Finally, helpful references to specialized texts, recent review articles and relevant scientific journals are provided at the end of each chapter, making this an ideal textbook for a one-semester course in medical imaging.

Nadine Barrie Smith is a faculty member in the Bioengineering Department and the Graduate Program in Acoustics at Pennsylvania State University. She also holds a visiting faculty position at the Leiden University Medical Center. She is a Senior Member of the IEEE, and of the American Institute of Ultrasound in Medicine where she is on both the Bioeffects and Technical Standards Committees. Her current research involves ultrasound transducer design, ultrasound imaging and therapeutic applications of ultrasound. She has taught undergraduate medical imaging and graduate ultrasound imaging courses for the past 10 years.

Andrew Webb is Professor of Radiology at the Leiden University Medical Center, and Director of the C.J. Gorter High Field Magnetic Resonance Imaging Center. He is a Senior Member of the IEEE, and a Fellow of the American Institute of Medical and Biological Engineering. His research involves many areas of high field magnetic resonance imaging. He has taught medical imaging classes for graduates and undergraduates both nationally and internationally for the past 15 years.
Cambridge Texts in Biomedical Engineering

Series Editors
W. Mark Saltzman, Yale University
Shu Chien, University of California, San Diego

Series Advisors
William Hendee, Medical College of Wisconsin
Roger Kamm, Massachusetts Institute of Technology
Robert Malkin, Duke University
Alison Noble, Oxford University
Bernhard Palsson, University of California, San Diego
Nicholas Peppas, University of Texas at Austin
Michael Sefton, University of Toronto
George Truskey, Duke University
Cheng Zhu, Georgia Institute of Technology

Cambridge Texts in Biomedical Engineering provides a forum for high-quality accessible textbooks targeted at undergraduate and graduate courses in biomedical engineering. It covers a broad range of biomedical engineering topics from introductory texts to advanced topics including, but not limited to, biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering, and bioinformatics. The series blends theory and practice, aimed primarily at biomedical engineering students, it also suits broader courses in engineering, the life sciences and medicine.
Introduction to Medical Imaging

Physics, Engineering and Clinical Applications

Nadine Barrie Smith
Pennsylvania State University

Andrew Webb
Leiden University Medical Center
‘This is an excellently prepared textbook for a senior/first year graduate level course. It explains physical concepts in an easily understandable manner. In addition, a problem set is included after each chapter. Very few books on the market today have this choice. I would definitely use it for teaching a medical imaging class at USC.’

K. Kirk Shung, University of Southern California

‘I have anxiously anticipated the release of this book and will use it with both students and trainees.’

Michael B. Smith, Novartis Institutes for Biomedical Research

‘An excellent and approachable text for both undergraduate and graduate student.’

Richard Magin, University of Illinois at Chicago
Contents

1 General image characteristics, data acquisition and image reconstruction
 1.1 Introduction 1
 1.2 Specificity, sensitivity and the receiver operating characteristic (ROC) curve 2
 1.3 Spatial resolution 5
 1.3.1 Spatial frequencies 5
 1.3.2 The line spread function 6
 1.3.3 The point spread function 7
 1.3.4 The modulation transfer function 8
 1.4 Signal-to-noise ratio 10
 1.5 Contrast-to-noise ratio 12
 1.6 Image filtering 12
 1.7 Data acquisition: analogue-to-digital converters 15
 1.7.1 Dynamic range and resolution 16
 1.7.2 Sampling frequency and bandwidth 18
 1.7.3 Digital oversampling 19
 1.8 Image artifacts 20
 1.9 Fourier transforms 20
 1.9.1 Fourier transformation of time- and spatial frequency-domain signals 21
 1.9.2 Useful properties of the Fourier transform 22
 1.10 Backprojection, sinograms and filtered backprojection 24
 1.10.1 Backprojection 26
 1.10.2 Sinograms 27
 1.10.3 Filtered backprojection 27
 Exercises 30

2 X-ray planar radiography and computed tomography 34
 2.1 Introduction 34
 2.2 The X-ray tube 36
 2.3 The X-ray energy spectrum 40
2.4 Interactions of X-rays with the body
 2.4.1 Photoelectric attenuation
 2.4.2 Compton scattering
 2.5 X-ray linear and mass attenuation coefficients
 2.6 Instrumentation for planar radiography
 2.6.1 Collimators
 2.6.2 Anti-scatter grids
 2.7 X-ray detectors
 2.7.1 Computed radiography
 2.7.2 Digital radiography
 2.8 Quantitative characteristics of planar X-ray images
 2.8.1 Signal-to-noise
 2.8.2 Spatial resolution
 2.8.3 Contrast-to-noise
 2.9 X-ray contrast agents
 2.9.1 Contrast agents for the GI tract
 2.9.2 Iodine-based contrast agents
 2.10 Specialized X-ray imaging techniques
 2.10.1 Digital subtraction angiography
 2.10.2 Digital mammography
 2.10.3 Digital fluoroscopy
 2.11 Clinical applications of planar X-ray imaging
 2.12 Computed tomography
 2.12.1 Spiral/helical CT
 2.12.2 Multi-slice spiral CT
 2.13 Instrumentation for CT
 2.13.1 Instrumentation development for helical CT
 2.13.2 Detectors for multi-slice CT
 2.14 Image reconstruction in CT
 2.14.1 Filtered backprojection techniques
 2.14.2 Fan beam reconstructions
 2.14.3 Reconstruction of helical CT data
 2.14.4 Reconstruction of multi-slice helical CT scans
 2.14.5 Pre-processing data corrections
 2.15 Dual-source and dual-energy CT
 2.16 Digital X-ray tomosynthesis
 2.17 Radiation dose
 2.18 Clinical applications of CT
 2.18.1 Cerebral scans
 2.18.2 Pulmonary disease
 2.18.3 Liver imaging
 2.18.4 Cardiac imaging

Exercises
3 Nuclear medicine: Planar scintigraphy, SPECT and PET/CT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Radioactivity and radiotracer half-life</td>
<td>91</td>
</tr>
<tr>
<td>3.3</td>
<td>Properties of radiotracers for nuclear medicine</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>The technetium generator</td>
<td>93</td>
</tr>
<tr>
<td>3.5</td>
<td>The distribution of technetium-based radiotracers within the body</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>The gamma camera</td>
<td>97</td>
</tr>
<tr>
<td>3.6.1</td>
<td>The collimator</td>
<td></td>
</tr>
<tr>
<td>3.6.2</td>
<td>The detector scintillation crystal and coupled photomultiplier tubes</td>
<td>100</td>
</tr>
<tr>
<td>3.6.3</td>
<td>The Anger position network and pulse height analyzer</td>
<td>103</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Instrumental dead time</td>
<td>106</td>
</tr>
<tr>
<td>3.7</td>
<td>Image characteristics</td>
<td>108</td>
</tr>
<tr>
<td>3.8</td>
<td>Clinical applications of planar scintigraphy</td>
<td>109</td>
</tr>
<tr>
<td>3.9</td>
<td>Single photon emission computed tomography (SPECT)</td>
<td>110</td>
</tr>
<tr>
<td>3.10</td>
<td>Data processing in SPECT</td>
<td>112</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Scatter correction</td>
<td>112</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Attenuation correction</td>
<td>114</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Image reconstruction</td>
<td>115</td>
</tr>
<tr>
<td>3.11</td>
<td>SPECT/CT</td>
<td>116</td>
</tr>
<tr>
<td>3.12</td>
<td>Clinical applications of SPECT and SPECT/CT</td>
<td>117</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Myocardial perfusion</td>
<td>117</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Brain SPECT and SPECT/CT</td>
<td>120</td>
</tr>
<tr>
<td>3.13</td>
<td>Positron emission tomography (PET)</td>
<td>121</td>
</tr>
<tr>
<td>3.14</td>
<td>Radiotracers used for PET/CT</td>
<td>123</td>
</tr>
<tr>
<td>3.15</td>
<td>Instrumentation for PET/CT</td>
<td>124</td>
</tr>
<tr>
<td>3.15.1</td>
<td>Scintillation crystals</td>
<td>125</td>
</tr>
<tr>
<td>3.15.2</td>
<td>Photomultiplier tubes and pulse height analyzer</td>
<td>127</td>
</tr>
<tr>
<td>3.15.3</td>
<td>Annihilation coincidence detection</td>
<td>127</td>
</tr>
<tr>
<td>3.16</td>
<td>Two-dimensional and three-dimensional PET imaging</td>
<td>129</td>
</tr>
<tr>
<td>3.17</td>
<td>PET/CT</td>
<td>130</td>
</tr>
<tr>
<td>3.18</td>
<td>Data processing in PET/CT</td>
<td>131</td>
</tr>
<tr>
<td>3.18.1</td>
<td>Attenuation correction</td>
<td>131</td>
</tr>
<tr>
<td>3.18.2</td>
<td>Corrections for accidental and multiple coincidences</td>
<td>131</td>
</tr>
<tr>
<td>3.18.3</td>
<td>Corrections for scattered coincidences</td>
<td>133</td>
</tr>
<tr>
<td>3.18.4</td>
<td>Corrections for dead time</td>
<td>134</td>
</tr>
<tr>
<td>3.19</td>
<td>Image characteristics</td>
<td>134</td>
</tr>
<tr>
<td>3.20</td>
<td>Time-of-flight PET</td>
<td>135</td>
</tr>
<tr>
<td>3.21</td>
<td>Clinical applications of PET/CT</td>
<td>137</td>
</tr>
<tr>
<td>3.21.1</td>
<td>Whole-body PET/CT scanning</td>
<td>137</td>
</tr>
</tbody>
</table>
3.21.2 PET/CT applications in the brain

3.21.3 Cardiac PET/CT studies

Exercises

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.21.2 PET/CT applications in the brain</td>
<td>137</td>
</tr>
<tr>
<td>3.21.3 Cardiac PET/CT studies</td>
<td>139</td>
</tr>
<tr>
<td>Exercises</td>
<td>139</td>
</tr>
</tbody>
</table>

4 Ultrasound imaging

4.1 Introduction

4.2 Wave propagation and characteristic acoustic impedance

4.3 Wave reflection, refraction and scattering in tissue

- 4.3.1 Reflection, transmission and refraction at tissue boundaries
- 4.3.2 Scattering by small structures

4.4 Absorption and total attenuation of ultrasound energy in tissue

- 4.4.1 Relaxation and classical absorption
- 4.4.2 Attenuation coefficients

4.5 Instrumentation

4.6 Single element ultrasound transducers

- 4.6.1 Transducer bandwidth
- 4.6.2 Beam geometry and lateral resolution
- 4.6.3 Axial resolution
- 4.6.4 Transducer focusing

4.7 Transducer arrays

- 4.7.1 Linear arrays
- 4.7.2 Phased arrays
- 4.7.3 Beam-forming and steering via pulse transmission for phased arrays
- 4.7.4 Analogue and digital receiver beam-forming for phased arrays
- 4.7.5 Time-gain compensation
- 4.7.6 Multi-dimensional arrays
- 4.7.7 Annular arrays

4.8 Clinical diagnostic scanning modes

- 4.8.1 A-mode scanning: ophthalmic pachymetry
- 4.8.2 M-mode echocardiography
- 4.8.3 Two-dimensional B-mode scanning
- 4.8.4 Compound scanning

4.9 Image characteristics

- 4.9.1 Signal-to-noise
- 4.9.2 Spatial resolution
- 4.9.3 Contrast-to-noise

4.10 Doppler ultrasound for blood flow measurements

- 4.10.1 Pulsed wave Doppler measurements
- 4.10.2 Duplex and triplex image acquisition
5 Magnetic resonance imaging (MRI)

5.1 Introduction

5.2 Effects of a strong magnetic field on protons in the body
 5.2.1 Proton energy levels
 5.2.2 Classical precession

5.3 Effects of a radiofrequency pulse on magnetization
 5.3.1 Creation of transverse magnetization

5.4 Faraday induction: the basis of MR signal detection
 5.4.1 MR signal intensity
 5.4.2 The rotating reference frame

5.5 T_1 and T_2 relaxation times

5.6 Signals from lipid

5.7 The free induction decay

5.8 Magnetic resonance imaging

5.9 Image acquisition
 5.9.1 Slice selection
 5.9.2 Phase encoding
 5.9.3 Frequency encoding

5.10 The k-space formalism and image reconstruction

5.11 Multiple-slice imaging

5.12 Basic imaging sequences
 5.12.1 Multi-slice gradient echo sequences
 5.12.2 Spin echo sequences
 5.12.3 Three-dimensional imaging sequences

5.13 Tissue relaxation times

5.14 MRI instrumentation
 5.14.1 Superconducting magnet design
5.14.2 Magnetic field gradient coils .. 244
5.14.3 Radiofrequency coils .. 247
5.14.4 Receiver design .. 250
5.15 Parallel imaging using coil arrays 252
5.16 Fast imaging sequences ... 254
 5.16.1 Echo planar imaging ... 255
 5.16.2 Turbo spin echo sequences .. 256
5.17 Magnetic resonance angiography 257
5.18 Functional MRI .. 259
5.19 MRI contrast agents .. 261
 5.19.1 Positive contrast agents .. 261
 5.19.2 Negative contrast agents .. 263
5.20 Image characteristics .. 264
 5.20.1 Signal-to-noise .. 264
 5.20.2 Spatial resolution ... 265
 5.20.3 Contrast-to-noise .. 266
5.21 Safety considerations – specific absorption rate (SAR) 267
5.22 Lipid suppression techniques ... 267
5.23 Clinical applications ... 268
 5.23.1 Neurological applications .. 268
 5.23.2 Body applications .. 269
 5.23.3 Musculoskeletal applications 270
 5.23.4 Cardiology applications .. 271
Exercises ... 273

Index .. 283