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Introduction

Interest in magnetoconvection arose initially from astrophysics, following the

discovery of strong magnetic fields in sunspots, and the realization that their

relative coolness (and hence their darkness) was a consequence of magnetic

interference with convection. As theoretical studies progressed from linear to

nonlinear investigations, and ultimately to massive numerical experiments,

it became clear not only that magnetoconvection poses in itself a fascinating

challenge to applied mathematicians but also that it serves as a prototype of

double-diffusive behaviour in fluid dynamics, oceanography and laboratory

experiments.

In this opening chapter we first summarize the development of our subject

and then provide a brief survey of the chapters that follow in the book.

Although we shall focus our attention on idealized configurations that are

mathematically tractable, we also discuss more complex behaviour in the

real world.

1.1 Background and motivation

The original motivation for our subject came from astrophysics. Stars like

the Sun, with deep outer convection zones, are magnetically active. Their

magnetic fields are maintained by hydromagnetic dynamo action, resulting

from interactions between convection, rotation and magnetic fields in their

interiors – just as the geomagnetic field is maintained by a dynamo in the

Earth’s liquid core. The most prominent magnetic features on the Sun are

sunspots, like that shown in Figure 1.1. Although such a spot covers less than

1% of the solar disc, there are other more active stars with huge spots that

spread over significant fractions of their surfaces (Thomas and Weiss 2008).

Modern astrophysics began with the development of spectroscopy: exploit-

ing the Zeeman splitting of spectral lines by a magnetic field, Hale (1908)

discovered that sunspots are in fact the sites of strong magnetic fields (up
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2 Introduction

Figure 1.1 High-resolution G-band image of a symmetrical sunspot,
obtained with the Swedish Solar Telescope on La Palma. The magnetic
field is vertical at the centre of the spot but becomes increasingly inclined
towards the periphery. In the central dark umbra there is a tesseral pat-
tern of convection, with isolated bright dots, a few of which are visible. The
penumbra has a filamentary structure, with roll-like patterns of convection.
The small-scale cellular pattern surrounding the spot is the photospheric
granulation. Hot plasma rises in the centre of a granule and cooler fluid
sinks around its periphery. The bright points nestling between granules
indicate the presence of small-scale magnetic fields. (Courtesy of L. Rouppe
van der Voort and the Royal Swedish Academy of Sciences.)

to 0.3 tesla, or 3000 gauss). By the 1930s it had been realized that radiative

energy transport in the interior of the Sun, and of similar stars, gives way to

convective transport near their surfaces. The solar convection zone manifests

itself as small-scale cellular convection (‘granulation’) at the photosphere,

as can be seen in Figure 1.1 and, in greater detail, in Figure 1.2. Intense

small-scale magnetic fields are concentrated in the network of cool sinking

fluid that encloses the bright granules.

The prehistory of magnetoconvection began with an exchange of letters

between two astrophysicists, Ludwig Biermann in Germany and Thomas

Cowling in England, in 1938–39. Biermann suggested that the coolness of

a spot was caused by magnetic inhibition of convection (Cowling 1985).

Cowling (characteristically) expressed initial doubts but, after comparing
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1.1 Background and motivation 3

Figure 1.2 Small-scale magnetic fields in an active region on the Sun, shown
up as bright points in a G-band image. The dark pores contain stronger
fields, associated with the sunspot at top left. Magnetic fields are swept
aside by rising and expanding plasma in the centres of the granules, and
concentrated at their edges. The individual cells have diameters of around
1500 km. (From Berger, Rouppe van der Voort, and Löfdahl 2007 c© AAS.
Reproduced with permission.)

Reynolds and Maxwell stresses, conceded that Biermann’s idea was correct.

The war interrupted their correspondence but Biermann (1941) published

a brief statement of his idea, arguing that the magnetic field in a sunspot

was strong enough to suppress convection, since the magnetic energy density

was locally an order of magnitude greater than the kinetic energy density

of granular convection.1 After the war, it was Cowling (1953) who drew

attention to this obscure reference and helped to develop Biermann’s ideas

into a more coherent theory.

Meanwhile, Alfvén (1942a) had ushered in the new subject of magne-

tohydrodynamics (MHD) by reporting the existence of transverse waves

(now called after him) in a highly conducting fluid, and then going on to

describe the magnetic field as ‘frozen in’ to a perfectly conducting liquid

(Alfvén 1942b; Ferraro and Plumpton 1961).2 This concept was further

1 Biermann ascribed this criterion to Cowling – but cautiously referred to a paper that does
not mention it, rather than to their private correspondence. The key paragraph of
Biermann’s 1941 paper, copies of which are hard to find, has been reproduced (with a
translation) by Thomas and Weiss (1992).

2 Alfvén relied on a physical argument: ‘Every motion (perpendicular to the field) of the liquid
in relation to the lines of force is forbidden because it can give infinite eddy currents. Thus
the matter of the liquid is fastened to the lines of force’. What is now known as Alfvén’s
Theorem does not appear in the first edition of his book (Alfvén 1950).
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4 Introduction

developed by his student Walén (1946), who showed that B/ρ, where B

is the magnetic field and ρ is the density, evolves in the same way as a line

element moving with the fluid. Within the next few years it was realized that

magnetic fields in a perfectly conducting fluid behave analogously to vortic-

ity in an inviscid fluid, so that, corresponding to Kelvin’s Theorem in fluid

dynamics, there is Alfvén’s Theorem: the magnetic flux through a surface

moving with the fluid is conserved (e.g. Lundquist 1952). Shortly after-

wards, the existence of MHD waves was demonstrated experimentally, first

in mercury and then in liquid sodium (Lehnert 1954). Meanwhile, interest in

MHD had been stimulated by the first attempts to describe the generation

of the geomagnetic field by hydromagnetic dynamo action in the Earth’s

molten core.

A preliminary attempt to quantify the stabilizing effect of a magnetic field

on convection was made by Walén (1949).3 In modern terminology, Walén

considered an unstably stratified layer with a superadiabatic temperature

gradient β and a horizontal field B0. The upward buoyancy force on a fluid

element displaced a distance ξ from its equilibrium position is then gραβξ,

where α is the coefficient of thermal expansion; this is opposed by the cur-

vature force B2
0ξ/μ0l

2, where l is the semi-wavelength of the disturbance

and μ0 is the permeability of free space. Thus convection is suppressed if

gαβ < B2
0/(μoρl2) (Cowling 1953).

The 1950s saw the development of linear stability analysis, culminating

with the publication of the first edition of Cowling’s concise book in 1957 and

of Chandrasekhar’s tome in 1961. Cowling (1957, 1976a) rendered Walén’s

argument more precise. He considered two-dimensional disturbances to a

vertical field B0 in a perfectly conducting fluid. For rolls of width l and

depth d there is a transition (the ‘exchange of stabilities’) from undamped

oscillations to overturning convection as β is increased. Then convection sets

in for

gαβ > π2(l2 + d2)
B2

0

μ0ρd4
. (1.1)

A more realistic – and more interesting – situation arises when non-ideal

diffusive effects are included. Thompson (1951) introduced a magnetic diffu-

sivity η and a thermal diffusivity κ: linear behaviour then depends critically

on their ratio ζ = η/κ.4 In a star, where radiative diffusion predominates, ζ

is typically very small. For ζ > 1 and |B0| very large the static conducting

solution becomes unstable to monotonically growing modes for

3 Walén’s publication was mainly concerned with interactions between magnetic fields and
rotation. It was published privately, as Walén had fallen out with his superiors.

4 This ratio is the reciprocal of the Roberts number, used in geophysics.
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1.1 Background and motivation 5

gαβ >
π2(l2 + d2)

ζ

B2
0

μ0ρd4
. (1.2)

Thus diffusion facilitates overturning convection by allowing field lines to

slip through the fluid. With ζ < 1 and |B0| very large, however, convection

occurs as growing (overstable) oscillations for

gαβ > π2ζ(l2 + d2)
B2

0

μ0ρd4
; (1.3)

for ζ ≪ 1 this happens at a much lower value of β than that given by

Equation (1.1).

Chandrasekhar (1952, 1961) added a viscous diffusivity ν and provided

an exhaustive treatment of linear stability theory in terms of the Rayleigh

number R and the parameter Q, the square of a Hartmann number, now

known as the Chandrasekhar number, where

R =
gαβd4

κν
and Q =

B2
0d2

μ0ρην
. (1.4)

In particular, he established the critical Rayleigh numbers for which con-

vection can set in as overturning modes (at a stationary bifurcation) or

as oscillatory modes (at an oscillatory or Hopf bifurcation). Experiments

involving a layer of mercury yielded measurements of the critical Rayleigh

number for the onset of convection, Rac, as a function of Q, that were

consistent with these linear predictions (Nakagawa 1955, 1957).

The next issue is what happens after the initial onset of convection,

whether this occurs at a stationary or an oscillatory bifurcation. This

book is mainly concerned with investigations of nonlinear behaviour, using

a combination of analytical and numerical techniques. The real theoreti-

cal breakthrough came in the 1980s,5 with the development of nonlinear

dynamics and bifurcation theory. That made it possible to understand the

patterns of behaviour that were gradually being revealed by ever more

complicated numerical experiments. These began with studies of kinematic

flux expulsion; then, as computers grew more powerful, it became fea-

sible to model two-dimensional magnetoconvection in an incompressible

(Boussinesq) fluid.

The key theoretical development was the analysis of behaviour near a

degenerate Takens–Bogdanov bifurcation, where oscillatory and stationary

bifurcations coincide. As Moore’s Law led to yet more powerful comput-

ers it became possible to represent three-dimensional behaviour (thereby

5 Though the first nonlinear result had been published as a footnote by Veronis (1959), in the
same year that the term magnetoconvection was introduced by Malkus (1959).
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6 Introduction

introducing small-scale dynamo action), and eventually, with the advent of

massively parallel machines, to explore behaviour in a compressible layer

(which is most relevant to a star). This in turn has led to studies of pattern

formation and to group theoretical approaches.

Our aim is to focus on idealized model problems, governed by differen-

tial equations and boundary conditions that are precisely formulated. Any

numerical models should be accurate, and all small-scale structures should

be properly resolved. Repeating the calculations with different values of

the control parameters is the key to probing the underlying structure of

a problem. The patterns of behaviour that emerge can then be related to

analytical models that display similar bifurcation properties. Moreover, this

reductionist approach makes it possible to isolate and then to understand the

key physical processes that are involved. Such a style of research contrasts

sharply with that of direct numerical simulations, where the aim is to repro-

duce observed behaviour, for instance at the surface of a star, including all

the effects – compressibility, ionization, chemical composition and radiative

transport – that are involved. Any such computation obviously demands

even more massive computer power. Ultimately, a full understanding will

demand some synthesis of these two disparate approaches.

1.2 Outline of the book

We start, in the next chapter, with a brief introduction to magnetohydrody-

namics, focusing first on kinematic behaviour (including flux concentration

and flux expulsion), then on dynamical effects (including waves) and finally

on kinematic dynamos. The following chapter covers linear stability theory,

filling out the brief account above. After these preliminaries, we proceed to

describe the mildly nonlinear regime, which is most amenable to analysis, in

Chapter 4. Here we first consider weakly nonlinear behaviour, near the ini-

tial bifurcations, before going on to unfold the Takens–Bogdanov bifurcation.

These analytical results are compared with truncated models and with two-

dimensional (2D) numerical results. Next we go on to discuss the appearance

of chaotic oscillations at a Shilnikov bifurcation, comparing numerical results

with theoretical predictions. Finally, we consider an approximate treatment

of highly nonlinear behaviour in the strong field regime.

Chapter 5 is devoted to 2D Boussinesq magnetoconvection and to the

interpretation of numerical experiments in both Cartesian and axisymmet-

ric geometries. An interesting feature is the behaviour of localized patterns,

related to ‘snaking’ near the initial bifurcation. The effects of imposing an

inclined magnetic field, leading to travelling waves, are also discussed. The
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1.3 General references 7

following chapter progresses to 3D Boussinesq convection, with an empha-

sis on pattern selection. A numerical survey covers the transition from

strong to weak field regimes and the appearance of small-scale dynamo

action.

Going beyond all these considerations, we introduce the effects of rotation

in Chapter 7, starting with the playoff between Lorentz and Coriolis forces

in a plane layer. Next we discuss spherical systems and idealized dynamo

models. After that we give a brief account of the geodynamo and planetary

dynamos, and then go on to survey experimental approaches to dynamo

action using liquid metals.

In Chapter 8 we move on to compressible convection, considering first the

effects of breaking the up-down Boussinesq symmetry in a shallow layer. In

2D there are competitions between standing and travelling wave solutions,

while oscillatory hexagons take over in 3D. Stratified compressible magneto-

convection in a deep layer leads to changing patterns, with flux separation

and the formation of locally intense magnetic fields. The role of symmetries

in pattern formation can be studied with the aid of equivariant bifurcation

theory.

In the last chapter we proceed to summarize the properties of stellar

dynamos, followed by some comments on MHD turbulence. Then we return

to our initial motivation at the beginning of this chapter and discuss sunspots

and photospheric magnetoconvection in the light of the knowledge we have

gained. The travelling waves that appear when fields are inclined can be

related to filamentary structures seen in sunspot penumbrae.

The book ends with four appendices: the first explains the Boussinesq

and anelastic approximations that are used throughout the book, while

the second provides a brief introduction to chaotic behaviour. Finally,

we summarize the principal features of the closely related problem of

double-diffusive convection and then apply them to magnetic buoyancy.

1.3 General references

Although this is the first monograph devoted exclusively to magnetoconvec-

tion, the development of the subject can be followed chronologically, starting

with Chandrasekhar’s (1961) massive tome and continuing with a series of

reviews. Some of these are in the spirit of astrophysical fluid dynamics,

while others are more firmly astrophysical. Proctor and Weiss (1982) sum-

marized the state of knowledge at that time; aspects of subsequent progress

have been covered by Hughes and Proctor (1988), Weiss (1991, 2003, 2012)

and Proctor (1992, 2005). Astrophysical applications were surveyed by
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8 Introduction

Weiss (2001) and have also been discussed by Schüssler (2001, 2013), by Stein

and Nordlund (2006) and, more recently, by Nordlund, Stein and Asplund

(2009) and Stein (2012b). Many aspects of solar magnetoconvection also fig-

ure in the recent book by Thomas and Weiss (2008), while Glatzmaier (2013)

has covered computational modelling of convection and magnetoconvection.

Among the many references on magnetohydrodynamics, we recommend

the classic text by Cowling (1976a), the account by Roberts (1967),

and relevant chapters of the books by Moffatt (1978), Parker (1979),

Choudhuri (1998), Mestel (2012) and Priest (2014). Acheson (1990) and

Thompson (2006a) offer good introductions to non-magnetic fluid dynamics

and to astrophysical fluid dynamics, respectively.
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Basic MHD

As a preliminary to embarking on the theory of magnetoconvection, it is

necessary to provide an introduction to magnetohydrodynamics. Such a

description comes in two parts: kinematics, which deals with the influ-

ence of motion on a magnetic field; and dynamics, which deals with the

influence of the magnetic field on the velocity and other properties of the

fluid. We start with kinematics, assuming that the fluid velocity u(x, t) is

known, and unaffected by the magnetic field, before proceeding to dynam-

ics, and then return to discuss some relevant aspects of kinematic dynamo

theory.

2.1 The induction equation

Any discussion of kinematic MHD must begin with the induction equation.

We begin by introducing the magnetohydrodynamic approximation and then

go on to consider behaviour of magnetic fields in perfectly conducting fluids,

reserving the effects of finite conductivity for the next section.

Our starting point is Maxwell’s equations for the magnetic field B(x, t),

electric field E(x, t), electrostatic charge density ρE(x, t) and current density

j(x, t). These take the form

∇ ·E =
1

ǫ0
ρE, (2.1)

∇ · B = 0, (2.2)

∂B

∂t
= −∇ ×E , (2.3)

1

c2

∂E

∂t
= ∇ × B − μ0j. (2.4)
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10 Basic MHD

Here c is the speed of light, and μ0, ǫ0 are the permeability and permittivity

of vacuum, with c2 = (ǫ0μ0)
−1. As is appropriate for solar plasmas and

liquid metals, we shall ignore any dielectric or magnetic effects of media.

It is well known that the full Maxwell equations given above admit solu-

tions in the form of electromagnetic waves, travelling at speed c. To see this,

suppose that there is a vacuum, so that no currents flow and j = 0: then E

may be eliminated between (2.3) and (2.4) to give (making use of (2.2) and

the vector identity ∇ × ∇× = ∇(∇ · ∇) −∇2),

∂2B

∂t2
= c2∇2B, (2.5)

which is the wave equation for each Cartesian component of B. Now c is

very large compared to any fluid velocities found in astrophysical bodies

of interest, and it would pose immense difficulties to have to calculate the

electromagnetic wave field as part of a convection calculation. If we suppose

that typical phenomena occur on a timescale T and length scale L, so that

a typical velocity scale U ∼ L/T , and that ∆ ≡ L/cT ≪ 1, then the relative

sizes of B and E may be obtained from (2.3):

|B|

T
∼

|E |

L
(2.6)

and so the ratio of the terms c−2∂E/∂t (the displacement current) and ∇×B

in (2.4) may be estimated:

|c−2∂E/∂t|

|∇ × B|
∼

L|E |

c2T |B|
∼ ∆2 ≪ 1. (2.7)

Thus we can neglect the displacement current term and replace (2.4) by

Ampère’s ‘pre-Maxwell’ equation

∇ × B = μ0j. (2.8)

In order to close the system it is necessary to relate the current to the

electric field. Unlike Maxwell’s equations, such a relation depends on the

nature of the fluid. For most normal purposes it is sufficient to adopt the

simple relation known as Ohm’s Law, which can be written

j = σE
′, (2.9)

where E
′ is the electric field measured in the rest frame of the fluid, and σ

is the electrical conductivity of the fluid, often supposed uniform (though

in astrophysical applications it may depend on temperature and density).1

1 The conductivity σ is limited by collisions between electrons and positively charged ions. In a
dilute plasma the electrons gyrate around field lines between collisions and a generalized form
of Ohm’s Law becomes appropriate (Cowling 1976a; Mestel 2012).
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