Oxytocin, Vasopressin, and Related Peptides in the Regulation of Behavior

The mammalian neurohypophyseal peptide hormones oxytocin and vasopressin act to mediate human social behavior – they affect trust and social relationships and have an influence on avoidance responses. Describing the evolutionary roots of the effects that these neuropeptides have on behavior, this book examines remarkable parallel findings in both humans and non-human animals.

The chapters are structured around three key issues: the molecular and neurohormonal mechanisms of peptides; phylogenetic considerations of their role in vertebrates; and their related effects on human behavior, social cognition, and clinical applications involving psychiatric disorders such as autism. A final chapter summarizes current research perspectives and reflects on the outlook for future developments.

Providing a comparative overview and featuring contributions from leading researchers, this is a valuable resource for graduate students, researchers, and clinicians in this rapidly developing field.

Elena Choleris is Professor of Psychology and Neuroscience at the University of Guelph, Ontario, Canada. Her main field of expertise is the neurobiology of social behavior in rodents.

Donald W. Pfaff is Professor and Head of the Laboratory of Neurobiology and Behavior at the Rockefeller University, New York, USA. A Member of the National Academy of Sciences, he was awarded the 2011 Lehrman Lifetime Achievement Award by the Society for Behavioral Neuroendocrinology.

Martin Kavaliers is Professor of Psychology and Neuroscience at the University of Western Ontario, London, Canada. His main field of expertise is the neurobiology of biobehavioral responses to naturalistic stressors in rodents.
Oxytocin, Vasopressin, and Related Peptides in the Regulation of Behavior

Edited by

Elena Choleris
University of Guelph, Ontario, Canada

Donald W. Pfaff
Rockefeller University, New York, USA

Martin Kavaliers
University of Western Ontario, London, Canada
Contents

Preface
Elena Choleris, Martin Kavaliers, and Donald W. Pfaff
List of contributors

Part I Oxytocin and vasopressin systems: Anatomy, function, and development

1 Oxytocin, vasopressin, and their interplay with gonadal steroids
 Monica B. Dhakar, Erica L. Stevenson, and Heather K. Caldwell
 3

2 Oxytocin and vasopressin release and their receptor-mediated intracellular pathways that determine their behavioral effects
 Inga D. Neumann and Erwin H. van den Burg
 27

3 Regulation of oxytocin and vasopressin secretion: Involvement of the calcium amplification pathway through cyclic ADP-ribose and CD38
 Haruhiro Higashida, Olga Lopatina, and Amina Sarwat
 44

4 The organizational effects of oxytocin and vasopressin: Behavioral implications
 Bruce S. Cushing
 56
Contents

Part II Behavioral studies – Comparative approach

5 Social regulatory functions of vasotocin and isotocin in fish
Richmond R. Thompson and James C. Walton

6 Vasotocin modulation of social behaviors in amphibians
Sunny K. Boyd

7 Nonapeptide mechanisms of avian social behavior and phenotypic diversity
James L. Goodson

8 Oxytocin, vasopressin, and the evolution of mating systems in mammals
Sara M. Freeman and Larry J. Young

9 Oxytocin regulation of maternal behavior: From rodents to humans
Cort A. Pedersen

10 Oxytocin regulation of sheep social and maternal behavior
Keith M. Kendrick

11 The roles of vasopressin and oxytocin in aggression
Jerome H. Pagani, Scott R. Wersinger, and W. Scott Young, III

12 Role of vasopressin in flank marking and aggression
Craig F. Ferris, Richard H. Melloni, Jr., and H. Elliott Albers

13 The involvement of oxytocin and vasopressin in social recognition and social learning: Interplay with the sex hormones
Riccardo Dore, Anna Phan, Amy E. Clipperton-Allen, Martin Kavaliers, and Elena Choleris

14 Oxytocin, vasopressin, sociality, and pathogen avoidance
Martin Kavaliers and Elena Choleris

15 Oxytocin and addiction: Recent preclinical advances and future clinical potential
Iain S. McGregor and Michael T. Bowen

16 Oxytocin and vasopressin in non-human primates
Benjamin J. Ragen and Karen L. Bales

Part III Human studies

17 The involvement of oxytocin and vasopressin in fear and anxiety: Animal and human studies
Yoav Litvin and Donald W. Pfaff

18 Oxytocin instantiates empathy and produces prosocial behaviors
Jorge A. Barraza and Paul J. Zak

19 Oxytocin and vasopressin in human sociality and social psychopathologies
Richard P. Ebstein, Idan Shalev, Salomen Israel, Florina Uzefovsky, Reut Aviran, Ariel Knafo, Nurit Yirmiya, and David Mankuta

20 Oxytocin and autism
Joshua J. Green, Bonnie Taylor, and Eric Hollander

21 Oxytocin, vasopressin, and related peptides in the regulation of behavior: Where next?
Elena Choleris, Donald W. Pfaff, and Martin Kavaliers

Index

Color plates will fall between pages 210 and 211
Preface

Figure 1 Courtesy of Anna Phan and Christopher Gabor.
Comparative approaches to oxytocin, vasopressin, and vertebrate behavior

This text is intended by the three of us to serve upper-level undergraduate students and beginning graduate students who are interested in how relatively well understood neurochemical systems regulate natural behaviors in animals, including humans. Some of the strongest causal links discovered, to date, between molecular biological phenomena and behavioral regulation have to do with hormones. This is especially true for hormones whose chemistry is relatively simple. Classically, those causal links have involved steroid hormones, produced in peripheral organs, telling the brain what is going on in the rest of the body, and thus allowing the brain to regulate behavior in a manner consonant with the state of the body. In this text, chapters explicate molecular/behavioral regulation in the opposite direction: hormones that are produced in the vertebrate brain, by specific groups of nerve cells in the basal forebrain, not only enter the circulation but also act as neuromodulators within the central nervous system. Oxytocin and arginine vasopressin, whose chemical structures in the vertebrates were elucidated during the 1950s and whose genes were cloned during the 1980s, each has only nine amino acids and each peptide has its structure constrained by a disulfide bridge. Differing from each other by only two amino acids, the two neuropeptides or “nonapeptides” have a fascinating role across the vertebrates.

As described, you will see in this text that oxytocin, vasopressin, and related neuropeptides have a variety of behavioral actions in vertebrate animals ranging from fishes to humans. In the broadest sense the two hormones produced in the brain are “telling” the body what behavioral and physiological function these particular basal forebrain cell groups need to have accomplished. A series of foundational chapters lay the basis for understanding the regulation and expression of oxytocin and vasopressin systems. This is followed by a number of chapters that utilize a phylogenetic/comparative approach to describe the behavioral roles of oxytocin and vasopressin and related neuropeptides across vertebrate species. Finally, a number of chapters consider the roles of oxytocin and vasopressin in the modulation of human behavior.

Evolutionary foundations and the roles of oxytocin/vasopressin-related neuropeptides in invertebrates

Although this text is designed to provide a comparative behavioral approach to oxytocin and vasopressin and related peptides in the vertebrates, to more fully appreciate the roles of oxytocin and vasopressin it is useful to understand their evolutionary history and invertebrate foundations. Although oxytocin and vasopressin are only found in mammals, members of the two neuropeptide systems constitute one of the most ancient and evolutionarily conserved neuropeptide systems. OT and AVP belong to a large superfamiliy found in a wide range of vertebrate and invertebrate (e.g., hydra, worms and some insect) species (for reviews see Archer, 1972; Donaldson and Young, 2008; Goodson 2008). In the jawed vertebrates oxytocin-like and vasopressin-like neuropeptide lineages arose from a common ancestral gene by local duplication in a gawed vertebrate ancestor (Goodson, 1998). Invertebrates, with a few exceptions (e.g., cephalopods), have only one oxytocin/vasopressin gene family homolog (e.g., annetocin (annelid worms), conopressin (snails, sea hare, leeches), inotocin (some insects)) (Donaldson and Young, 2008). Interestingly, in the insects oxytocin/vasopressin-like peptides were found in flies, mosquitoes, some beetles but not in the more advanced eusocial honey bee (Stafflinger et al., 2008).

The molecular structure and behavioral actions mediated by these neuropeptides and their receptors in the invertebrates are in many respects comparable to those of vertebrates. For example, just as oxytocin and vasopressin are produced in the neurosecretory magnocellular neurons in the vertebrate hypothalamus so the oxytocin/vasopressin homolog, annetocin, is expressed in, and released
from, the sensory neurosecretory “brain” counter-part of annelid worms. Indeed, the annelid neurons express the same micro-RNAs and transcription factors as do the neurosecretory magnocellular neurons of vertebrates (Tesmair-Raible et al., 2007). At a functional level oxytocin/vasopressin-like neuropeptide involvement in osmoregulation and fluid balance is also evident across the animal phyla (Goodson, 1998). It is tempting to speculate that this early involvement in the regulation of responses to osmotic stress may lay the foundation for the evolution of neuropeptide mechanisms that modulate interactions with the environment and stress responses.

Oxytocin and vasopressin’s association with reproduction, parental and socio-sexual behaviors and responses are also evolutionarily conserved, even though the specific behaviors affected can be species and taxon specific. For example, several members of the oxytocin/vasopressin family evoke response related to reproduction in annelids and leeches (Fujino et al., 1999; Wagenaar et al., 2010). Similarly, conopressin, a molluscan (snail) homolog of oxytocin/vasopressin, modulates ejaculation in males and egg-laying in females. (Oumi et al., 1996). These early reproductive roles may have set the stage for the evolution of the involvement of these neuropeptides in various socio-sexual functions described in this book for the vertebrates. Snails present another particularly fascinating example of the evolutionarily flexibility of the oxytocin/vasopressin system. The venom of cone snails contains an endogenous vasopressin analog, conopressin-T, that functions as a vasopressin antagonist. These venoms, which are injected through specialized mouth parts of the cone snail and are used to catch prey or for protection against predators, may in part exert their actions thorough modifications in the effects of vasopressin-like neuropeptides (Dutertre et al., 2008). Finally, in the most advanced of the molluscs, the cephalopods (octopus, cuttlefish), there are two superfamilies of oxytocin/vasopressin-like peptides members (octopressin and cephaloactin (Minakat, 2010)) that exert effects on cuttlefish learning and memory similar to those of OT/AVP in mammals (Bardou et al., 2010). As described, you will see in this text a range of behavioral roles of oxytocin and vasopressin the vertebrates that build upon these invertebrate foundations.

Comments to us by students and other readers will be welcome, because shortcomings of the current effort could be remedied in a second edition of this text.

Finally, we want to thank our editors at the Cambridge University Press, Chris Curcio and Martin Griffiths, for shepherding this project through the publication process.

E. C., D. W. P. and M. K.
July 2012

REFERENCES

Preface

Contributors

H. Elliott Albers
Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA

Reut Avinun
Neurobiology, Hebrew University, Jerusalem, Israel

Karen L. Bales
Department of Psychology, University of California, Davis; and California National Primate Research Center, CA, USA

Jorge A. Barraza
Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, USA

Michael T. Bowen
School of Psychology, University of Sydney, Australia

Sunny K. Boyd
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA

Heather K. Caldwell
Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, USA

Elena Choleris
Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
List of contributors

Amy E. Clipperton-Allen
Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada

Bruce S. Cushing
Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH, USA

Monica B. Dhakar
Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH, USA

Riccardo Dore
Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada

Richard P. Ebstein
Psychology Department, National University of Singapore, Singapore, Psychology Department, Hebrew University, Jerusalem, Israel

Craig F. Ferris
Department of Psychology, Northeastern University, Boston, MA, USA

Sara M. Freeman
Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA

James L. Goodson
Department of Biology, Indiana University, Bloomington, IN, USA

Joshua J. Green
Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY, USA

Haruhiro Higashida
Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa, Japan

Eric Hollander
Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY, USA

Salomon Israel
Psychology Department, Hebrew University, Jerusalem, Israel

Martin Kavaliers
Department of Psychology, University of Western Ontario, London, Ontario, Canada

Keith M. Kendrick
School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, PR China

Ariel Knafo
Psychology Department, Hebrew University, Jerusalem, Israel

Yoav Litvin
Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, USA

Olga Lopatina
Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa, Japan and Department of Biochemistry, Krasnoyarsk State Medical University, Russia

David Mankuta
Department of Obstetrics and Gynecology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel

Iain S. McGregor
School of Psychology, University of Sydney, Australia

Richard H. Melloni, Jr.
Department of Psychology, Northeastern University, Boston, MA, USA

Inga D. Neumann
Department of Neurobiology and Animal Physiology, University of Regensburg, Regensburg, Germany