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1 Introduction

We live in a world out of equilibrium – a nonequilibrium world. We are surrounded by

phenomena occurring in nature, in industrial and technological processes and in con-

trolled experiments that we can only understand with the aid of a theoretical framework

that encompasses nonequilibrium processes. Our understanding of these phenomena

is largely based on a macroscopic theory that starts with the balance equations for

the densities of mass, momentum, energy and other macroscopic quantities. To solve

these equations, it is necessary to introduce relationships based on experiments that

relate the observable properties of materials to the variables that define their macro-

scopic state. These relationships may describe equilibrium or locally equilibrium states

of the material and in this case they are called equations of state. But we also need other

relationships that relate the fluxes of properties to the property gradients that drive them.

These are called constitutive or transport equations. The main subject of this book is the

study of these transport equations and the material properties, such as the transport coef-

ficients that account for the differences in the behaviour of different substances, using

molecular dynamics simulation methods.

The molecular dynamics (MD) simulation method was developed soon after the

Monte Carlo (MC) method, for the purpose of studying relaxation and transport phe-

nomena [9]. Both MC and MD employed periodic boundary conditions, in which the

system of interest is assumed to be replicated periodically in all directions, to limit (but

not totally eliminate) the effects of the finite system size. At first, applications of this

new technique focused on the structure, dynamics and equations of state of equilib-

rium systems [10–12]. The development in the 1950s of the Green–Kubo formalism,

relating linear transport coefficients to equilibrium fluctuations in the corresponding

fluxes [13, 14], made it possible to use equilibrium simulations to study nonequilib-

rium properties. However these methods, based on the computation of time correlation

functions, were difficult to apply to all of the transport properties except self-diffusion

due to their large computational requirements in comparison to the computing power

available at that time. In addition, they could only address transport processes in the

linear regime, i.e. where the flux is directly proportional to the thermodynamic driving

force. These factors motivated the development of nonequilibrium molecular dynamics

(NEMD) methods.

Early nonequilibrium simulations of shear flow by Lees and Edwards [15], Gosling,

McDonald and Singer [16] and Ashurst and Hoover [17] set the stage for decades of

innovation and advancement through the interplay of theory, experiment and simulation.
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2 Introduction

There is no better example of this than the extraordinary growth of nonequilibrium sta-

tistical mechanics and molecular simulation as they both matured during the 1980s.

For interested readers, much of the historical development of nonequilibrium molecular

dynamics methods can be traced through Hoover’s review and the accompanying orig-

inal research articles in a special issue of Physica in 1983 [18], Hoover’s 1993 review

[19] and the book by Evans and Morriss [2].

Throughout the development of nonequilibrium simulation methodology there have

emerged three distinct ways of performing nonequilibrium simulations. The first class

of methods tries to model a real physical system as closely as possible and applies

perturbations that are physically realistic. The Ashurst and Hoover [17] paper represents

a prototype of this approach. This method has the great advantage that there is never any

uncertainty regarding the relationship between the thermodynamic force applied in the

simulation and the natural one. The disadvantages are that the simulated systems must

always represent a tiny portion of any realistic system (unless the system that we want to

mimic is actually nanoscopic), and the perturbations that are applied must be enormous

compared to those existing in nature, due to the large thermal noise in the quantities

being computed for small systems. This type of simulation is often called a ‘boundary-

driven’ nonequilibrium simulation because the thermodynamic force arises due to the

conditions of the momentum, heat or chemical species reservoirs attached to the system

of interest. In these simulations, heat that is generated by the nonequilibrium processes

occurring in the system of interest is transferred by natural thermal conduction to the

boundary regions where it is removed by velocity rescaling [17] or one of the modern

synthetic thermostats discussed in the following chapters. Even though the Lees and

Edwards method employs periodic boundary conditions, it can be seen as a member

of this class because it is the motion of the periodic images above and below the main

simulation box that drives the shear flow. They therefore act as momentum reservoirs.

Whereas nonperiodic reservoir methods result in spatially inhomogeneous properties,

the Lees-Edwards method results in spatially homogeneous properties. This is a huge

advantage for the accurate determination of transport properties.

A second class of nonequilibrium simulation method is one in which a spatially peri-

odic (usually sinusoidal) transverse perturbation is applied through an explicit external

force to drive shear flow, so that it is compatible with standard periodic boundary con-

ditions. The method devised by Gosling, McDonald and Singer [16] is the prototype of

this class. In this method, there are no reservoirs to absorb the dissipated heat. Gosling,

McDonald and Singer allowed the temperature of the system to rise with time, yielding

the temperature dependence of the properties during the course of the simulation. Later

variants of this sinusoidal transverse force (STF) technique applied a synthetic thermo-

stat to the fluid to allow the development of a true steady state. This method results in

spatially inhomogeneous properties, because the strain rate, density and temperature all

follow a sinusoidal spatial dependence.

The third method uses explicit external forces in the equations of motion, combined

with periodic boundary conditions, to drive homogeneous fluxes of the desired type.

This method was pioneered by Hoover, Evans and others in the early 1980s [20, 21].

Like the STF method, this method has the advantage that the perturbation is explicit
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Introduction 3

in the equations of motion, making it possible to apply response theory to the sys-

tem. Because the perturbation is spatially homogeneous, the response of the system is

also homogeneous so the properties are computed at a specific, known thermodynamic

state. Finally, the absence of reservoirs means that surface effects can be eliminated,

without requiring excessively large systems. The transport properties can be obtained

by direct averaging of the fluxes [20], by using the ‘subtraction method’ to reduce

noise [22] or by forming their nonequilibrium transient time correlation functions

and applying nonlinear response theory to determine their average values (the TTCF

method) [23].

By the early 1990s when the first edition of the book by Evans and Morriss [2]

appeared, many of the basic technical aspects of nonequilibrium molecular dynamics

simulation methods were already settled. These techniques had been developed and

tested using simple atomic liquids as a testbed. With the growth of computer power and

increasing sophistication of algorithms and software, it became possible to embark on

more ambitious investigations of nonequilibrium phenomena, and the range of applica-

tions of NEMD grew rapidly.

In this book, we have decided to restrict our attention to homogeneous NEMD meth-

ods based on the Hoover-Evans approach, STF methods based on the Gosling McDon-

ald and Singer method and inhomogeneous NEMD methods where the inhomogeneity

(i.e. the presence of interfaces in confined flows) is itself of interest. We have not dis-

cussed the wide range of very useful techniques based on reservoir methods superfi-

cially similar to the original Ashurst and Hoover simulations, but differing in important

ways. This is not due to a lack of confidence in these methods on our part, but rather the

simple lack of time it would take us to do justice to them, the limited space available

to us, and our own lack of personal experience with them. These techniques have been

successfully used to study shear flow [24], thermal conductivity and thermal diffusion

[25] and we encourage the curious reader to seek further information in the vast ocean

of scientific literature.

The remainder of this book is summarised as follows. In Chapter 2, we introduce

the theory of nonequilibrium thermodynamics, which provides the macroscopic foun-

dations of our description of nonequilibrium phenomena and helps us to decide which

properties are worth computing. The nonequilibrium thermodynamics of the transport

of mass and heat in multicomponent fluids, and the transport of spin angular momentum

in molecular fluids are treated in detail.

Chapter 3 outlines the elements of nonequilibrium statistical mechanics that are nec-

essary for an understanding of the algorithms and methods to be described later. Partic-

ular attention is paid to the development of response theory in a form that is suitable for

the analysis of homogeneous nonequilibrium molecular dynamics algorithms and the

TTCF method.

The statistical mechanical derivations of expressions for the temperature and fluxes

are the focus of Chapter 4. Derivations of expressions for the temperature, pressure

tensor and heat flux vector are carried out in detail for different circumstances in order

to display to those who are new to the field some of the finer points that are often omitted

from original research articles.
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4 Introduction

The underlying theory of the SLLOD algorithm for simulating homogeneous flows

of atomic fluids is discussed in Chapter 5, with a focus on shear and elongational flows.

The intricate details of homogeneous thermostats for nonequilibrium systems and peri-

odic boundary conditions that are compatible with the various flows are discussed.

Applications of the SLLOD equations of motion for atomic fluids are presented in

Chapter 6. Steady and oscillatory flows are discussed for different types of deformation

including shear and elongation.

Algorithms for heat and mass transport are discussed in Chapter 7. Single compo-

nent and multicomponent systems are considered and the connections between the phe-

nomenological coefficients for heat flow, diffusion and the cross-effects and their corre-

sponding practical transport coefficients are discussed.

Chapter 8 considers nonequilibrium flows of molecular liquids. Some simple models

for molecular liquids and the molecular version of the SLLOD algorithm are described.

Simulation methods for different ensembles are discussed and results for a few cases of

molecular liquids are described.

Simulations of inhomogeneous systems including STF, planar Couette and Poiseuille

flow simulations are covered in Chapter 9. Chapter 10 extends this discussion to the

increasingly important case of confined molecular liquids.

In the final chapter, we consider the implications of the breakdown of standard

Navier-Stokes-Fourier hydrodynamics in the analysis of NEMD simulations of highly

inhomogeneous fluids. This requires the consideration of generalised hydrodynamics, in

which the stress becomes a nonlocal function of the strain rate. A proper consideration

of slip, which is usually negligible in macroscopic hydrodynamics, is seen to be vitally

important for nanofluidic flows.
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2 Nonequilibrium Thermodynamics and
Continuum Mechanics

Molecular dynamics simulations provide us with a numerical solution to the equations

of motion for all of the particles in a system. For a system of N particles, this gives us 3N

positions and 3N momenta, which embody the full microscopic description of the sys-

tem. By itself, this is too much information. What we require is a way to compute mea-

surable properties from this microscopic description. Experimental studies of thermal

and mechanical processes in fluids at the macroscopic and mesoscopic scales are based

on coarse-grained measurements of field variables that obey the laws of continuum ther-

modynamics and mechanics. In this chapter, we will review some of the basic results of

continuum thermodynamics and mechanics that we need to make the link between the

microscopic mechanical variables and the variables of continuum thermodynamics and

mechanics. Fortunately, a well-developed formalism for the unified treatment of contin-

uum thermodynamics and mechanics already exists, namely nonequilibrium thermody-

namics. Many excellent books and review articles on nonequilibrium thermodynamics

are available, ranging from classical treatments of linear nonequilibrium thermodynam-

ics [4] to more advanced treatments of nonequilibrium thermodynamics for systems that

are far from equilibrium [26, 27]. Here, we will provide a simplified introduction to this

vast and growing field, with an emphasis on the ideas that are pertinent to our discussion

of nonequilibrium molecular dynamics simulations.

2.1 Thermodynamics

The first law of thermodynamics for a macroscopic system is expressed as

�U = Q − W, (2.1)

where �U is the internal energy change, Q is the heat absorbed by the system and W

is the thermodynamic work done by the system. The second law of thermodynamics,

which introduces the entropy S, expresses the entropy difference between two equilib-

rium states A and B in the form
∫ B

A

dQ

T
≤ S(B) − S(A), (2.2)

where dQ is an infinitesimal heat transfer into the system along some arbitrary thermo-

dynamic path and T is the temperature of the heat bath from which the heat is absorbed.
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6 Nonequilibrium Thermodynamics

If the path is a reversible or “quasi-static” one, then the infinitesimal heat absorbed for

any segment of that path is denoted as dQR, and the definition of an entropy change in

terms of the reversible heat transfer is obtained

dQR

/

T = dS. (2.3)

In classical thermodynamics, the second law is expressed as an equality for a

reversible process, but for an arbitrary process it is an inequality. This is clearly unsatis-

factory, for a number of different reasons. First, it means that the second law of thermo-

dynamics becomes purely qualitative and it loses its ability to predict the progress of the

entropy through processes that are not “quasi-static”. Secondly, it results in a paradox,

because common statements of the second law imply that the entropy of an arbitrary

nonequilibrium state for an isolated system is defined and it increases until the system

reaches its equilibrium state. Both of these issues are resolved if we adopt the local equi-

librium hypothesis. When the local equilibrium hypothesis is satisfied, the local entropy

density remains well defined, and the total entropy of the system is the volume integral

of the local entropy density. When the local equilibrium hypothesis is not satisfied, even

the existence of the entropy and the uniqueness of the temperature remain contentious.

One of the primary goals of nonequilibrium thermodynamics is to obtain an equality

for the entropy change for certain types of irreversible processes. Here, we will restrict

our attention to processes for which the local equilibrium hypothesis is satisfied and this

goal can be achieved.

In general, the properties of a material undergoing a thermal or mechanical change

will not necessarily be homogeneous in space or constant in time. Therefore, it is useful

to introduce local, time-dependent quantities in place of the extensive thermodynamic

variables if we want a description of the processes occurring inside the system’s bound-

aries. For example, the volume is replaced by the specific volume, defined as the limit

as the mass goes to zero of the volume per unit mass of a small but macroscopic mass

element of the system,

v (r, t ) =
1

ρ (r, t )
= lim

δm→0

δV

δm
, (2.4)

where we have also introduced the more commonly used mass density, ρ (r, t ). All

of the other extensive thermodynamic variables can similarly be converted into local

specific (per unit mass) field variables.

Let us consider a small but macroscopic mass element δm, undergoing a reversible

thermal process. The first law of thermodynamics can be applied to find the infinitesimal

internal energy change d(δU ) due to any combination of a reversible infinitesimal heat

transfer where the differential of the heat absorbed is given by d(δQR) = T d(δS), and

an infinitesmal reversible compression or expansion where the differential of the work

done by the material is d(δWR) = pd(δV ), as

d(δU ) = T d(δS) − pd(δV ). (2.5)

Now we can substitute δU = u (r, t ) δm, δS = s (r, t ) δm and δV = δm/ρ (r, t ), take the

limit as the mass approaches zero, and rearrange the result to obtain the reversible part
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2.2 Continuum Mechanics 7

of the change in the entropy due to changes in the thermodynamic fields,

T (r, t )ds(r, t ) = du(r, t ) −
p(r, t )

ρ2(r, t )
dρ(r, t ). (2.6)

This is the local form of the Gibbs equation. The Gibbs equation and its generalisations

are central to classical and extended treatments of nonequilibrium thermodynamics.

Note that although the specific internal energy, entropy and volume are very useful

thermodynamic field variables, it is often more convenient to work with their densities.

For example, the internal energy density (internal energy per unit volume) is equal to

the specific internal energy multiplied by the mass density, ρ (r, t ) u (r, t ).

2.2 Continuum Mechanics

The basic principles of continuum mechanics can be found in any one of a large number

of excellent books. Treatments with an emphasis on fluids include those by Bird et al.

[28, 29], Tanner [30], Phan-Thien and Huilgol [31] and Truesdell [32]. Our aim here is

to introduce some basic concepts that we will use later in our development of nonequi-

librium thermodynamics and our interpretations of molecular dynamics simulations.

2.2.1 Pressure Tensor

The forces acting on a small element of fluid can be classified as either short-ranged,

in which case they are regarded as contact forces acting on the surface of the element,

or long-ranged, where they are regarded as acting throughout the entire element. Con-

tinuum mechanics treats contact forces as contributions to the pressure tensor, whereas

forces that act throughout a fluid are treated as body forces. Of course, the distinction

between these two types of force is not always clear, particularly if we consider a very

small volume element with a size approaching the range of the “short-ranged” forces,

but it is usually the case that intermolecular forces fall into the short-ranged category

and external gravitational and electric fields can be regarded as long-ranged.

Consider an element of surface area on a closed surface in the fluid. The element of

surface area has an orientation defined by the outward pointing normal vector at that

point on the surface. The total force dF acting on the oriented surface element dA due

to the pressure tensor arising from molecular motion and intermolecular interactions

within the material is given by

dF = −PT
· dA. (2.7)

This is the mechanical definition of the pressure tensor. In an isotropic equilibrium fluid,

the pressure tensor is isotropic, P = p1, where 1 is the second-rank isotropic tensor (the

unit tensor) and p is the scalar pressure of the equilibrium fluid, p = (1/3) Tr (P). In

the context of fluid mechanics, it is often preferred to separate the equilibrium and

nonequilibrium parts of the pressure tensor and define the nonequilibrium part of the

pressure tensor as Π = P − p1 and the stress as σ = −Π
T . Note that the transpose in
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8 Nonequilibrium Thermodynamics

this relationship is required because stress is defined in terms of the force exerted by

the surrounding medium on a fluid element, dF = σ · dA whereas the pressure tensor

is defined as the diffusive transport of momentum through the surface. This distinction

is discussed in more detail by Bird et al. [28]. In many cases, the pressure tensor is sym-

metric, but in situations where the intrinsic angular momentum density of the material

plays a role, the pressure tensor may possess an antisymmetric component.

2.2.2 Deformation

In continuum mechanics, we can characterise the kinematics of material deformation in

terms of the motion of a set of material points which are defined by their positions at a

certain time. For example, a point r
′ could represent the position of a certain material

element at time t = 0, and the label r
′ can be used to identify this point at all future

times, regardless of the motion that the material may undergo. The trajectory of a mate-

rial point is given by its path function r = M (r′, t ) [31] and the deformation gradient

tensor is defined as F = (∂r/∂r
′)T , where the superscript T denotes the transpose. The

relative deformation gradient Ft (τ ) = (∂r
′′/∂r) is defined as the derivative of the posi-

tion at some intermediate time τ with respect to its position at another time t. In general,

neither of these times need be equal to t = 0. Deformation can be defined in terms of

the “right relative Cauchy-Green strain tensor”, which is given by

Ct (τ ) = Ft (τ )T Ft (τ ) . (2.8)

As the name implies, this measure of strain is not unique. In particular, for finite strains,

as distinct from infinitesimal strains, different strain measures are not identical. The dif-

ferences between these different measures of strain arise from different possible choices

of the reference state. Alternative definitions of strain can be found in many of the pre-

viously mentioned books on theoretical rheology or continuum mechanics [28, 30–32].

For our current purposes, it is sufficient to choose a commonly used definition and

develop our treatment consistently with this definition.

Standard treatments of rheology discuss fluid deformation in terms of the “rheologi-

cally simple fluid” model. A “rheologically simple fluid” is defined as one for which the

stress is given by a spatially local functional of the strain history. For a “rheologically

simple fluid” the deformation can also be expressed in terms of the Rivlin-Ericksen ten-

sors, which are defined as the material (streaming) derivatives of the strain tensor, given

by

dn

dτ n
Ct (τ )

∣

∣

∣

∣

τ=t

= An (t ) , (2.9)

where n = 0, 1, 2, . . .. This can also be expressed in terms of the velocity gradient ten-

sor L = ∇v and its transpose. Using the results for the material derivative of the relative

deformation gradient and its transpose, Ḟ = LF and Ḟ
T

= FT
L

T , the rate of change of
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2.3 Nonequilibrium Thermodynamics 9

the strain is found to be

d

dτ
Ct (τ ) =

d

dτ

(

Ft (τ )T Ft (τ )
)

= FT
t · L · Ft + FT

t · L
T

· Ft . (2.10)

Evaluating this at time t = τ results in FT
t = Ft = 1 which then gives

A1 (t ) =
d

dτ
Ct (τ )

∣

∣

∣

∣

τ=t

= L + L
T (2.11)

for the rate of strain. This reflects the fact that the rate of strain is related to only the

symmetric part of the velocity gradient tensor. In the standard continuum mechanics

treatment, the higher-order time derivatives are defined in terms of the gradients of the

particle accelerations and higher derivatives as

Ln =
dn

dτ n
Ft (τ )

∣

∣

∣

∣

τ=t

= ∇
dn

r

dtn
= ∇

dn−1
v

dtn−1
(2.12)

and the Rivlin-Eriksen tensors are then given by

An (t ) =
dn

dτ n
Ct (τ )

∣

∣

∣

∣

τ=t

=

n
∑

r=0

(

n

r

)

L
T
n−rLr, (2.13)

where
( n

r

)

=
n!

r!(n−r)!
, L1 = L and L0 = 1. A recursion relation due to Oldroyd [31] can

be used to generate the (n + 1)th Rivlin-Eriksen tensor from the nth,

An+1 =
d

dt
An + An · L + L

T
· An. (2.14)

These results will be used later when simulation results for the stress tensor in shear and

planar elongational flows are described in terms of some standard continuum mechani-

cal constitutive equations.

2.3 Nonequilibrium Thermodynamics

The equations of change for the thermal and mechanical fields, i.e. the density, the

streaming velocity and the internal energy, are derived from basic physical principles –

conservation of mass, Newton’s second law of motion and conservation of the total

energy. In keeping with our simplified approach, which we hope will most clearly dis-

play the underlying physical ideas, we will apply these principles to the motion of a mass

element and derive the balance equations for the density, velocity and specific internal

energy fields.

2.3.1 Mass Balance

We begin our derivation of the balance equation for the mass with the assumption that

our small but macroscopic subsystem is defined as a cuboidal element of the continuum
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10 Nonequilibrium Thermodynamics

that maintains a constant mass while it undergoes thermal and mechanical changes.1

Thus, we can write

d(δm)

dt
=

d

dt
(ρδV ) = ρ

d(δV )

dt
+ δV

dρ

dt
= 0. (2.15)

The volume of the mass element can only change if the velocities of the fluid at opposing

faces of the cuboid are different, so the term containing the rate of change of the volume

can be written as

1

δV

d(δV )

dt
=

1

δxδyδz

d

dt
(δxδyδz) =

1

δx
(δvx) +

1

δy

(

δvy

)

+
1

δz
(δvz) , (2.16)

which becomes ∇ · v in the limit as the size of the mass element approaches zero. Thus,

we obtain the equation of change for the local fluid density,

dρ

dt
= −ρ∇ · v. (2.17)

2.3.2 Momentum Balance

Applying Newton’s second law of motion to the small mass element, we obtain

δm
dv

dt
= δF

t , (2.18)

where δF
t is the total force acting on the material element. We will consider two types of

force that may act on the mass element. The first is the force due to interactions with the

surrounding fluid (via the pressure tensor, Equation (2.7)), and the second is the body

force due to an external field F
e, which we will write as δF = δmF

e. This explicitly

nominates the external field as a gravitational field, since it couples to the mass, but the

body forces due to electric and other fields can be written in a similar way, by altering

the variable to which the field couples. The explicit form of the x-component of the total

force due to the stresses on all six faces of the cuboid and the external body force is

δF t
x = −δyδz [Pxx(x + δx) − Pxx(x)] − δzδx

[

Pyx(y + δy) − Pyx(y)
]

− δxδy [Pzx(z + δz) − Pzx(z)] + δmF e
x

(2.19)

and the other components are similar. Figure 2.1 shows some of these forces schemati-

cally. Substituting Equation (2.19) and the corresponding equations for the y and z com-

ponents of the force into Equation (2.18) and then dividing both sides by the volume of

the mass element δV = δxδyδz and taking the continuum limit, we find

ρ
dv

dt
= −∇ · P + ρF

e. (2.20)

1 A cuboid is a parallelepiped with rectangular faces.
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