Distributed Computing

Principles, Algorithms, and Systems

Distributed computing deals with all forms of computing, information access, and information exchange across multiple processing platforms connected by computer networks. Design of distributed computing systems is a complex task. It requires a solid understanding of the design issues and an in-depth understanding of the theoretical and practical aspects of their solutions. This comprehensive textbook covers the fundamental principles and models underlying the theory, algorithms, and systems aspects of distributed computing.

Broad and detailed coverage of the theory is balanced with practical systems-related problems such as mutual exclusion, deadlock detection, authentication, and failure recovery. Algorithms are carefully selected, lucidly presented, and described without complex proofs. Simple explanations and illustrations are used to elucidate the algorithms. Emerging topics of significant impact, such as peer-to-peer networks and network security, are also covered.

With state-of-the-art algorithms, numerous illustrations, examples, and homework problems, this textbook is invaluable for advanced undergraduate and graduate students of electrical and computer engineering and computer science. Practitioners in data networking and sensor networks will also find this a valuable resource.

Ajay D. Kshemkalyani is a Professor in the Department of Computer Science, at the University of Illinois at Chicago. He was awarded his Ph.D. in Computer and Information Science in 1991 from The Ohio State University. Before moving to academia, he spent several years working on computer networks at IBM Research Triangle Park. In 1999, he received the National Science Foundation's CAREER Award. He is a Senior Member of the IEEE, and his principal areas of research include distributed computing, algorithms, computer networks, and concurrent systems. He currently serves on the editorial board of *Computer Networks*.

Mukesh Singhal is Full Professor and Gartner Group Endowed Chair in Network Engineering in the Department of Computer Science at the University of Kentucky. He was awarded his Ph.D. in Computer Science in 1986 from the University of Maryland, College Park. In 2003, he received the IEEE

> Technical Achievement Award, and currently serves on the editorial boards for the *IEEE Transactions on Parallel and Distributed Systems* and the *IEEE Transactions on Computers*. He is a Fellow of the IEEE, and his principal areas of research include distributed systems, computer networks, wireless and mobile computing systems, performance evaluation, and computer security.

Distributed Computing

Principles, Algorithms, and Systems

Ajay D. Kshemkalyani

University of Illinois at Chicago, Chicago

and

Mukesh Singhal University of Kentucky, Lexington

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521189842

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008 First paperback edition (with corrections) 2011

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87634-6 Hardback ISBN 978-0-521-18984-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my father Shri Digambar and my mother Shrimati Vimala.

Ajay D. Kshemkalyani

To my mother Chandra Prabha Singhal, my father Brij Mohan Singhal, and my daughters Meenakshi, Malvika, and Priyanka.

Mukesh Singhal

Contents

Preface

page xv

1	Introduction	1
1.1	Definition	1
1.2	Relation to computer system components	2
1.3	Motivation	3
1.4	Relation to parallel multiprocessor/multicomputer systems	5
1.5	Message-passing systems versus shared memory systems	13
1.6	Primitives for distributed communication	14
1.7	Synchronous versus asynchronous executions	19
1.8	Design issues and challenges	22
1.9	Selection and coverage of topics	33
1.10	Chapter summary	34
1.11	Exercises	35
1.12	Notes on references	36
	References	37
2	A model of distributed computations	39
2.1	A distributed program	39
2.2	A model of distributed executions	40
2.3	Models of communication networks	42
2.4	Global state of a distributed system	43
2.5	Cuts of a distributed computation	45
2.6	Past and future cones of an event	46
2.7	Models of process communications	47
2.8	Chapter summary	48
2.9	Exercises	48
2.10	Notes on references	48
	References	49

viii

3	Logical time	50
3.1	Introduction	50
3.2	A framework for a system of logical clocks	52
3.3	Scalar time	53
3.4	Vector time	55
3.5	Efficient implementations of vector clocks	59
3.6	Jard–Jourdan's adaptive technique	65
3.7	Matrix time	68
3.8	Virtual time	69
3.9	Physical clock synchronization: NTP	78
3.10	Chapter summary	81
3.11	Exercises	84
3.12	Notes on references	84
	References	84
4	Global state and snapshot recording algorithms	87
4.1	Introduction	87
4.2	System model and definitions	90
4.3	Snapshot algorithms for FIFO channels	93
4.4	Variations of the Chandy-Lamport algorithm	97
4.5	Snapshot algorithms for non-FIFO channels	101
4.6	Snapshots in a causal delivery system	106
4.7	Monitoring global state	109
4.8	Necessary and sufficient conditions for consistent global	
	snapshots	110
4.9	Finding consistent global snapshots in a distributed	
	computation	114
4.10	Chapter summary	121
4.11	Exercises	122
4.12	Notes on references	122
	References	123
5	Terminology and basic algorithms	126
5.1	Topology abstraction and overlays	126
5.2	Classifications and basic concepts	128
5.3	Complexity measures and metrics	135
5.4	Program structure	137
5.5	Elementary graph algorithms	138
5.6	Synchronizers	163
5.7	Maximal independent set (MIS)	169
5.8	Connected dominating set	171
5.9	Compact routing tables	172
5.10	Leader election	174

1	v
	Λ.

7 1 1		175
5.11	Challenges in designing distributed graph algorithms	175
5.12	Object replication problems	176
5.13	Chapter summary	182
5.14	Exercises	183
5.15	Notes on references	185
	References	186
6	Message ordering and group communication	189
6.1	Message ordering paradigms	190
6.2	Asynchronous execution with synchronous communication	195
6.3	Synchronous program order on an asynchronous system	200
6.4	Group communication	200
6.5	Causal order (CO)	205
6.6	Total order	215
6.7	A nomenclature for multicast	213
6.8	Propagation trees for multicast	220
6.9	Classification of application-level multicast algorithms	221
6.10	•••	223
6.11	Semantics of fault-tolerant group communication	228
6.11 6.12	Distributed multicast algorithms at the network layer	230 236
	Chapter summary Exercises	
6.13	Exercises Notes on references	236
6.14		238
	References	239
7	Termination detection	241
7.1	Introduction	241
7.2	System model of a distributed computation	242
7.3	Termination detection using distributed snapshots	243
7.4	Termination detection by weight throwing	245
7.5	A spanning-tree-based termination detection algorithm	247
7.6	Message-optimal termination detection	253
7.6 7.7	Termination detection in a very general distributed computing	
	Termination detection in a very general distributed computing	253
7.7	Termination detection in a very general distributed computing model	253 257
7.7 7.8	Termination detection in a very general distributed computing model Termination detection in the atomic computation model	253 257 263
7.7 7.8 7.9	Termination detection in a very general distributed computing model Termination detection in the atomic computation model Termination detection in a faulty distributed system Chapter summary Exercises	253 257 263 272
7.7 7.8 7.9 7.10	Termination detection in a very general distributed computing model Termination detection in the atomic computation model Termination detection in a faulty distributed system Chapter summary	253 257 263 272 279
7.7 7.8 7.9 7.10 7.11	Termination detection in a very general distributed computing model Termination detection in the atomic computation model Termination detection in a faulty distributed system Chapter summary Exercises	253 257 263 272 279 279
7.7 7.8 7.9 7.10 7.11 7.12	Termination detection in a very general distributed computing model Termination detection in the atomic computation model Termination detection in a faulty distributed system Chapter summary Exercises Notes on references References	253 257 263 272 279 279 279 280 280
7.7 7.8 7.9 7.10 7.11	Termination detection in a very general distributed computing model Termination detection in the atomic computation model Termination detection in a faulty distributed system Chapter summary Exercises Notes on references	253 257 263 272 279 279 280

X

0.0	YZ 1 1 1 1	200
8.3	Knowledge in synchronous systems	289
8.4	Knowledge in asynchronous systems	290
8.5	Knowledge transfer	298
8.6	Knowledge and clocks	300
8.7	Chapter summary	301
8.8	Exercises	302
8.9	Notes on references	303
	References	303
9	Distributed mutual exclusion algorithms	305
9.1	Introduction	305
9.2	Preliminaries	306
9.3	Lamport's algorithm	309
9.4	Ricart–Agrawala algorithm	312
9.5	Singhal's dynamic information-structure algorithm	315
9.6	Lodha and Kshemkalyani's fair mutual exclusion algorithm	321
9.7	Quorum-based mutual exclusion algorithms	327
9.8	Maekawa's algorithm	328
9.9	Agarwal–El Abbadi quorum-based algorithm	331
9.10	Token-based algorithms	336
9.11	Suzuki–Kasami's broadcast algorithm	336
9.12	Raymond's tree-based algorithm	339
9.13	Chapter summary	348
9.14	Exercises	348
9.15	Notes on references	349
	References	350
10	Deadlock detection in distributed systems	352
10.1	Introduction	352
10.1	System model	352
10.2	Preliminaries	353
10.4	Models of deadlocks	355
10.5	Knapp's classification of distributed deadlock detection	
	algorithms	358
10.6	Mitchell and Merritt's algorithm for the single-	
	resource model	360
10.7	Chandy–Misra–Haas algorithm for the AND model	362
10.8	Chandy-Misra-Haas algorithm for the OR model	364
10.9	Kshemkalyani–Singhal algorithm for the <i>P</i> -out-of- <i>Q</i> model	365
10.10	Chapter summary	374
10.11	Exercises	375
10.12	Notes on references	375
	References	376

xi

11	Global predicate detection	379
11.1	Stable and unstable predicates	379
11.1	Modalities on predicates	382
11.2	Centralized algorithm for relational predicates	382
11.3 11.4	Conjunctive predicates	388
11.4	Distributed algorithms for conjunctive predicates	395
11.5		404
11.0	Further classification of predicates	
11.7	Chapter summary Exercises	405
		406
11.9	Notes on references	407
	References	408
12	Distributed shared memory	410
12.1	Abstraction and advantages	410
12.2	Memory consistency models	413
12.3	Shared memory mutual exclusion	427
12.4	Wait-freedom	434
12.5	Register hierarchy and wait-free simulations	434
12.6	Wait-free atomic snapshots of shared objects	447
12.7	Chapter summary	451
12.8	Exercises	452
12.9	Notes on references	453
	References	454
13	Checkpointing and rollback recovery	456
13.1	Introduction	456
13.2	Background and definitions	457
13.3	Issues in failure recovery	462
13.4	Checkpoint-based recovery	464
13.5	Log-based rollback recovery	470
13.6	Koo–Toueg coordinated checkpointing algorithm	476
13.7	Juang–Venkatesan algorithm for asynchronous checkpointing	
	and recovery	478
13.8	Manivannan-Singhal quasi-synchronous checkpointing	
	algorithm	483
13.9	Peterson-Kearns algorithm based on vector time	492
13.10	Helary-Mostefaoui-Netzer-Raynal communication-induced	
	protocol	499
13.11	Chapter summary	505
13.12	Exercises	506
13.13	Notes on references	506
	References	507

xii

14	Conconsus and agreement algorithms	510
14.1	Consensus and agreement algorithms Problem definition	510
14.1	Overview of results	
		514
14.3	Agreement in a failure-free system (synchronous or	515
144	asynchronous)	515
14.4	Agreement in (message-passing) synchronous systems with failures	516
14.5		510
14.3	Agreement in asynchronous message-passing systems with failures	529
14.6	Wait-free shared memory consensus in asynchronous systems	544
14.7	Chapter summary	562
14.8	Exercises	563
14.9	Notes on references	564
	References	565
15	Failure detectors	567
15.1	Introduction	567
15.2	Unreliable failure detectors	568
15.3	The consensus problem	577
15.4	Atomic broadcast	583
15.5	A solution to atomic broadcast	584
15.6	The weakest failure detectors to solve fundamental agreement	
	problems	585
15.7	An implementation of a failure detector	589
15.8	An adaptive failure detection protocol	591
15.9	Exercises	596
15.10	Notes on references	596
	References	596
16	Authentication in distributed systems	598
16.1	Introduction	598
16.2	Background and definitions	599
16.3	Protocols based on symmetric cryptosystems	602
16.4	Protocols based on asymmetric cryptosystems	615
16.5	Password-based authentication	622
16.6	Authentication protocol failures	625
16.7	Chapter summary	626
16.8	Exercises	627
16.9	Notes on references	627
10.7	References	628
		020
17	Self-stabilization	631
17.1	Introduction	631
17.2	System model	632

xiii

17.3	Definition of self-stabilization	634
17.4	Issues in the design of self-stabilization algorithms	636
17.5	Methodologies for designing self-stabilizing systems	647
17.6	Communication protocols	649
17.7	Self-stabilizing distributed spanning trees	650
17.8	Self-stabilizing algorithms for spanning-tree construction	652
17.9	An anonymous self-stabilizing algorithm for 1-maximal	
	independent set in trees	657
17.10	A probabilistic self-stabilizing leader election algorithm	660
17.11	The role of compilers in self-stabilization	662
17.12	Self-stabilization as a solution to fault tolerance	665
17.13	Factors preventing self-stabilization	667
17.14	Limitations of self-stabilization	668
17.15	Chapter summary	670
17.16	Exercises	670
17.17	Notes on references	671
	References	671
18	Peer-to-peer computing and overlay graphs	677
18.1	Introduction	677
18.2	Data indexing and overlays	679
18.3	Unstructured overlays	681
18.4	Chord distributed hash table	688
18.5	Content addressible networks (CAN)	695
18.6	Tapestry	701
18.7	Some other challenges in P2P system design	708
18.8	Tradeoffs between table storage and route lengths	710
18.9	Graph structures of complex networks	712
18.10	Internet graphs	714
18.11	Generalized random graph networks	720
18.12	Small-world networks	720
18.13	Scale-free networks	721
18.14	Evolving networks	723
18.15	Chapter summary	727
18.16	Exercises	727
18.17	Notes on references	728
	References	729
	Index	731

Preface

Background

The field of distributed computing covers all aspects of computing and information access across multiple processing elements connected by any form of communication network, whether local or wide-area in the coverage. Since the advent of the Internet in the 1970s, there has been a steady growth of new applications requiring distributed processing. This has been enabled by advances in networking and hardware technology, the falling cost of hardware, and greater end-user awareness. These factors have contributed to making distributed computing a cost-effective, high-performance, and faulttolerant reality. Around the turn of the millenium, there was an explosive growth in the expansion and efficiency of the Internet, which was matched by increased access to networked resources through the World Wide Web, all across the world. Coupled with an equally dramatic growth in the wireless and mobile networking areas, and the plummeting prices of bandwidth and storage devices, we are witnessing a rapid spurt in distributed applications and an accompanying interest in the field of distributed computing in universities, governments organizations, and private institutions.

Advances in hardware technology have suddenly made sensor networking a reality, and embedded and sensor networks are rapidly becoming an integral part of everyone's life – from the home network with the interconnected gadgets to the automobile communicating by GPS (global positioning system), to the fully networked office with RFID monitoring. In the emerging global village, distributed computing will be the centerpiece of all computing and information access sub-disciplines within computer science. Clearly, this is a very important field. Moreover, this evolving field is characterized by a diverse range of challenges for which the solutions need to have foundations on solid principles.

The field of distributed computing is very important, and there is a huge demand for a good comprehensive book. This book comprehensively covers all important topics in great depth, combining this with a clarity of explanation xvi

Preface

and ease of understanding. The book will be particularly valuable to the academic community and the computer industry at large. Writing such a comprehensive book has been a Herculean task and there is a deep sense of satisfaction in knowing that we were able complete it and perform this service to the community.

Description, approach, and features

The book will focus on the fundamental principles and models underlying all aspects of distributed computing. It will address the principles underlying the theory, algorithms, and systems aspects of distributed computing. The manner of presentation of the algorithms is very clear, explaining the main ideas and the intuition with figures and simple explanations rather than getting entangled in intimidating notations and lengthy and hard-to-follow rigorous proofs of the algorithms. The selection of chapter themes is broad and comprehensive, and the book covers all important topics in depth. The selection of algorithms within each chapter has been done carefully to elucidate new and important techniques of algorithm design. Although the book focuses on foundational aspects and algorithms for distributed computing, it thoroughly addresses all practical systems-like problems (e.g., mutual exclusion, deadlock detection, termination detection, failure recovery, authentication, global state and time, etc.) by presenting the theory behind and algorithms for such problems. The book is written keeping in mind the impact of emerging topics such as peer-to-peer computing and network security on the foundational aspects of distributed computing.

Each chapter contains figures, examples, exercises, a summary, and references.

Readership

This book is aimed as a textbook for the following:

- Graduate students and Senior level undergraduate students in computer science and computer engineering.
- Graduate students in electrical engineering and mathematics. As wireless networks, peer-to-peer networks, and mobile computing continue to grow in importance, an increasing number of students from electrical engineering departments will also find this book necessary.
- Practitioners, systems designers/programmers, and consultants in industry and research laboratories will find the book a very useful reference because it contains state-of-the-art algorithms and principles to address various design issues in distributed systems, as well as the latest references.

xvii

Preface

Hard and soft prerequisites for the use of this book include the following:

- An undergraduate course in algorithms is required.
 - Undergraduate courses in operating systems and computer networks would be useful.
- A reasonable familiarity with programming.

We have aimed for a very comprehensive book that will act as a single source for distributed computing models and algorithms. The book has both depth and breadth of coverage of topics, and is characterized by clear and easy explanations. None of the existing textbooks on distributed computing provides all of these features.

Acknowledgements

This book grew from the notes used in the graduate courses on distributed computing at the Ohio State University, the University of Illinois at Chicago, and at the University of Kentucky. We would like to thank the graduate students at these schools for their contributions to the book in many ways.

The book is based on the published research results of numerous researchers in the field. We have made all efforts to present the material in our own words and have given credit to the original sources of information. We would like to thank all the researchers whose work has been reported in this book. Finally, we would like to thank the staff of Cambridge University Press for providing us with excellent support in the publication of this book.

Access to resources

The following websites will be maintained for the book. Any errors and comments should be sent to ajayk@cs.uic.edu or singhal@cs.uky.edu. Further information about the book can be obtained from the authors' web pages:

- www.cs.uic.edu/~ajayk/DCS-Book
- www.cs.uky.edu/~singhal/DCS-Book.