Organic photochemistry

Cambridge Texts in Chemistry and Biochemistry

GENERAL EDITORS

S. J. Benkovic
Professor of Chemistry
Pennsylvania State University

J. Lewis
Professor of Inorganic Chemistry
University of Cambridge

K. Schofield
Professor of Organic Chemistry
University of Exeter

J. M. Thomas
Professor of Physical Chemistry
University of Cambridge

B. A. Thrush
Professor of Physical Chemistry
University of Cambridge
Organic photochemistry

J.M. Coxon
University of Canterbury, NZ

B. Halton
Victoria University of Wellington, NZ

SECOND EDITION

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle
Melbourne Sydney
CONTENTS

Preface to the first edition page vii
Preface to the second edition viii

1 Introduction – excitation and the excited state 1
1.1 The interaction of electromagnetic radiation with matter 1
1.2 Excitation 2
1.3 The excited state 9
1.4 The transfer of excitation energy – sensitisation and quenching 13
References 17

2 Intramolecular reactions of the alkene bond 18
2.1 Geometrical isomerisation 18
2.2 Cyclisation reactions of conjugated alkenes 25
2.3 Rearrangements – 1,4-dienes and the di-π-methane or Zimmerman rearrangement 49
2.4 Rearrangements – 1,5-dienes and the sigmatropic reaction 57
References 71

3 Intramolecular reactions of the carbonyl group 72
3.1 Saturated acyclic carbonyl compounds 72
3.2 Saturated cyclic carbonyl compounds 86
3.3 βγ-Unsaturated carbonyl compounds 95
3.4 αβ-Unsaturated carbonyl compounds 103
3.5 Cyclohexadienones 110
References 120

4 Intermolecular cycloaddition reactions 123
4.1 [2+2] cycloaddition reactions of alkenes 123
4.2 [2+2] cycloaddition reactions of carbonyl compounds to alkenes – oxetane formation 139
4.3 [2+2] cycloaddition reactions of αβ-unsaturated carbonyl compounds 145
Contents

4.4 Other cycloadditions 152
4.5 Cycloaddition of benzene and its derivatives 162
 References 178

5 Oxidation, reduction, substitution and elimination reactions 180
5.1 Incorporation of molecular oxygen 180
5.2 Oxidative coupling 191
5.3 Reduction reactions 196
5.4 Substitution reactions 205
5.5 Molecular rearrangements involving elimination and substitution 216
5.6 Formation of reactive intermediates by molecular elimination 222
 References 232

Index 234
PREFACE TO THE FIRST EDITION

The use of light to effect chemical change has been recognised for many years, but it is only recently that sufficient knowledge has been attained to place photochemical reactions in the realm of organic synthesis. The recent application, by Woodward and Hoffmann, of the principle of conservation of orbital symmetry to concerted reactions has made an important contribution to the understanding of many photochemical processes. This book has been written to provide an introduction to the principles and applications of organic photochemistry at a level suitable for senior undergraduate and graduate students in universities and technical institutes. It is not intended to provide an exhaustive survey of the field but rather to provide the student with an up-to-date background of the subject, on which a more detailed study can be based.

The authors gratefully acknowledge many helpful comments from Dr K. Schofield. We also thank Dr B. G. Odell for critically reading the entire manuscript, and Professors M. F. Grundon and J. Vaughan, and Dr M. P. Halton and Mr A. D. Woolhouse for many helpful suggestions. Any errors are the sole responsibility of the authors. Finally we thank our wives.

J. M. C.
B. H.

New Zealand, 1972
PREFACE TO THE SECOND EDITION

In the decade since this book first appeared research involving organic photochemistry has been prolific. In this edition we have attempted to summarise those classes of reaction which best illustrate the types of photochemical behaviour commonly observed for simple organic molecules. Wherever possible reference is given to review-type material for the student or teacher wishing to pursue the topic in more detail; the annual Royal Society of Chemistry specialist periodical report Photochemistry provides an excellent route to the primary literature for those who seek such detail.

We anticipate that the use of lasers to investigate photochemically induced reactions will become more common in the next ten years. Thus much more detailed information on known reactions and of specific excited states and their chemistry is likely to become available.

The authors acknowledge many helpful comments from Professor K. Schofield. We also thank Dr P. J. Steel and Dr M. P. Halton for reading the manuscript and for their constructive suggestions. We also appreciate the many helpful and encouraging comments from colleagues around the world who have used the first edition for their courses.

J. M. C.

B. H.

New Zealand, 1986