Assisted Reproductive Technology
Accomplishments and New Horizons

This insightful and thought-provoking book describes the many recent advances that have revolutionized reproductive medicine. This rapid transformation is the result of converging and overlapping developments in reproductive biology, molecular biology, and genetics, allied with remarkable developments in new technologies. This book surveys this rapid expansion and looks ahead at the exciting new prospects for the future that stand at the watershed between basic science and clinical application. From oogenesis and spermatogenesis, through to fertilization, embryogenesis and cloning, it looks at state-of-the-art technologies and scientific advances. Subsequent chapters focus on infertility and its diagnosis and treatment using the full armory of assisted reproductive technologies. A concluding section surveys the impact of these developments on the provision, regulation, and financing of reproductive health care in the global community.

This will be essential reading for all practitioners in reproductive medicine: scientists, clinicians and researchers.

Christopher J. De Jonge Professor, Department of Obstetrics and Gynecology, Director of Laboratories, Reproductive Medicine Center, University of Minnesota, Minneapolis, USA.

Christopher L. R. Barratt Professor, Department of Medicine, University of Birmingham Medical School and Birmingham Woman's Hospital, Birmingham, UK.
Assisted Reproductive Technology
Accomplishments and New Horizons

EDITED BY

Christopher J. De Jonge
Reproductive Medical Center,
University of Minnesota,
Minneapolis, USA

Christopher L. R. Barratt
Assisted Conception Unit,
University of Birmingham and
Birmingham Women's Hospital,
Birmingham, UK
This book is dedicated to our families and in memory of the late Professor Lonnie Russell
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Part I The gametes: present and future

<table>
<thead>
<tr>
<th>1</th>
<th>Spermatogenesis in vitro in mammals</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bernard Jégou, Charles Pineau, and Jorma Toppari</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The spermatozoon as a machine: compartmentalized pathways bridge cellular structure and function</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Alexander J. Travis and Gregory S. Kopf</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Attributes of fertile spermatozoa</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Christopher De Jonge and Christopher L. R. Barratt</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>In vitro oogenesis</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Frank L. Barnes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The oocyte as a machine</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Kate Hardy</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Follicular influences on oocyte and embryo competence</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Jonathan van Blerkom</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unresolved and basic problems in assisted reproductive technology</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Jim Cummins</td>
<td></td>
</tr>
</tbody>
</table>

Part II Techniques: present and future

<table>
<thead>
<tr>
<th>8</th>
<th>Influences of culture media on embryo development</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barry Bavister and Jay Baltz</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Part I The science

9 Cryopreservation of immature and mature gametes 144
 John K. Critser, Yuksel Agca, and Erik J. Woods
10 Embryonic stem cells 167
 Ann M. Lawler and John D. Gearhart
11 Modification of the male genome by gene and spermatogonial transplantation 178
 Peter J. Donovan, Michael D. Griswold, and the late Lonnie D. Russell
12 Genetic diagnosis: the future 186
 David Cram and David de Kretser
13 Cloning mammals 206
 Don P. Wolf and Shoukhrat Mitalipov
14 Fluorescence imaging: gamete selection and intracellular sperm injection 217
 Laura Hewitson, Cal Simerly, and Gerald Schatten

Part II Further development

15 Diagnosis and treatment of male infertility 231
 Axel Kamischke and Eberhard Nieschlag
16 Tests of male fertility 255
 R. John Aitken
17 Diagnosis and treatment for female subfertility 272
 Peter Platteau and Paul Devroe
18 Ultrasound imaging at the beginning of the second millennium 282
 Richard P. Dickey and Ellen Matulich
19 The natural and the stimulated cycle 302
 Ian D. Cooke

Part III The clinic

20 Embryo stage and transfer number 311
 Alan Trounson
21 The federal research base in the USA for assisted reproductive technology 320
 Donna L. Vogel

Part IV Concepts for the global community

22 From conception to contraception 329
 Gustavo F. Doncel, Christine Mauck, Douglas S. Colvard, and Lourens J. D. Zaneveld
23 Developing immunocontraceptives 355
 Eileen A. McLaughlin and Michael K. Holland
24 ARTistic licence: should assisted reproductive technologies be regulated? 366
 Nanette R. Elster
25 Finances and access to assisted reproductive technologies: justice and publication of results 376
 Francoise Shenfield
26 Sex selection 384
 Joe Leigh Simpson and Sandra Ann Carson
27 Intracytoplasmic sperm injection: a time bomb? 397
 Herman J. Tournaye and André C. Van Steirteghem
28 Cryopreservation of gametes and embryos: legal and ethical aspects 407
 Susan M. Avery and Peter R. Brinsden

Index 415

Plates between pp. 178 and 179*
*These plates are available for download in colour from www.cambridge.org/9780521188951
Contributors

Yuksel Agca
Cryobiology Research Institute, The Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, 1044 West Walnut Street, Indianapolis, IN 46202, USA

R. John Aitken
School of Biological and Chemical Sciences, Centre for Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

Susan M. Avery
Bourn Hall Clinic, Bourn, Cambridge CB3 7TR, UK

Jay Baltz
The Loeb Research Institute, Ottawa Hospital, 725 Parkdale Avenue and Departments of Obstetrics and Gynecology, Division of Reproductive Medicine, and Cellular and Molecular Medicine, University of Ottawa, Ontario K1Y 4E9, Canada

Frank L. Barnes
IVF Labs, L.L.C., 2712 E. Swasont Way, Salt Lake City, UT 84117, USA

Christopher L. R. Barratt
Assisted Conception Unit, University Department of Medicine, Birmingham Women's Hospital, Birmingham B15 2TG, UK

Barry Bavister
Department of Biological Sciences, University of New Orleans, and the Audubon Institute, Center for Research of Endangered Species, 14001 River Road, New Orleans, LA 70131, USA

Peter R. Brinsden
Bourn Hall Clinic, Bourn, Cambridge CB3 7TR, UK
Contributors

Sandra Ann Carson
Department of Obstetrics and Gynecology, Baylor College of Medicine, 6550 Fannin, Houston, TX, USA

Peter J. Donovan
Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA

Douglas S. Colvard
Contraceptive Research and Development (CONRAD) Program, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA

Nanette R. Elster
Institute for Bioethics, Health Policy and Law, School of Medicine, University of Louisville, Louisville, KY 40202, USA

John D. Gearhart
School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Baltimore, MD 21287, USA

Michael D. Griswold
Washington State University, Pullman, WA 99164-4660, USA

Ian D. Cooke
University of Sheffield, Sheffield S3 7RE, UK

Kate Hardy
Department of Reproductive Science and Medicine, Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK

Laura Hewitson
Pittsburgh Development Center of the Magee Women’s Research Institute and the Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Michael K. Holland
Pest Animal Control CRC, GPO Box 284, Canberra, ACT 2601, Australia

Bernard Jégou
GERM-INSERM U.435, Campus de Beaulieu, Université de Rennes I, 35042 Rennes, Bretagne, France

Howard W. Jones Jr.
Eastern Virginia Medical School, Norfolk, VA and Johns Hopkins University School of Medicine, Baltimore, MD, USA

Jim Cummins
Murdoch University, Perth, Western Australia

Michael D. Griswold
Washington State University, Pullman, WA 99164-4660, USA

Christopher De Jonge
Department of Obstetrics and Gynecology and Reproductive Medicine Center, University of Minnesota, 606 24th Avenue South, Minneapolis, MN 55454, USA

Kate Hardy
Department of Reproductive Science and Medicine, Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK

Christopher De Jonge
Department of Obstetrics and Gynecology and Reproductive Medicine Center, University of Minnesota, 606 24th Avenue South, Minneapolis, MN 55454, USA

Michael K. Holland
Pest Animal Control CRC, GPO Box 284, Canberra, ACT 2601, Australia

David Cram
Monash IVF and Monash Institute of Reproduction and Development, Melbourne, Australia

David de Kretser
Monash Institute of Reproduction and Development, Melbourne, Australia

Paul Devoe
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel) Brussels, Belgium

Richard P. Dickey
Section of Reproductive Endocrinology and Infertility, Department Obstetrics and Gynecology, Louisiana State University School of Medicine and the Fertility Institute of New Orleans, 6020 Bullard Avenue, New Orleans, LA, USA

Axel Kamischke
Institute of Reproductive Medicine of the University (WHO Collaborating Centre for Research in Human Reproduction), Domagkstr. 11, D-48129, Münster, Germany

Gustavo F. Doncel
Contraceptive Research and Development (CONRAD) Program, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA

Gregory S. Kopf
Contraception Women’s Health Research Institute, Wyeth Ayerst Research, PO Box 8299, Philadelphia, PA 19101, USA

© in this web service Cambridge University Press

www.cambridge.org
Contributors

Ann M. Lawler
School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Baltimore, MD 21287, USA

Françoise Shenfield
Reproductive Medicine Unit, University College Hospital and the Royal Free and University College Hospitals Medical School, the London Women's Clinic, Harley Street, London, UK

Ellen Matulich
Fertility Institute of New Orleans, 6020 Bullard Avenue, New Orleans, LA, USA

Cal Simerly
Pittsburgh Development Center of the Magee Women's Research Institute, Pittsburgh PA 15213 and the Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Christine Mauck
Contraceptive Research and Development (CONRAD) Program, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA

Joe Leigh Simpson
Department of Obstetrics and Gynecology, Baylor College of Medicine, 6550 Fannin, Houston, TX, USA

Eileen A. McLaughlin
Pest Animal Control CRC, GPO Box 284, Canberra, ACT 2601, Australia

Jorma Toppari
Department of Pediatrics and Physiology, University of Turku, Turku 20520, Finland

Shoukhrat Mitalipov
Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton OR, USA

Herman J. Tournaye
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium

Eberhard Nieschlag
Institute of Reproductive Medicine of the University (WHO Collaborating Centre for Research in Human Reproduction), Domagkstr. 11, D-48129, Münster, Germany

Charles Pineau
GERM-INSERM U.435, Campus de Beaulieu, Université de Rennes I, 35042 Rennes, Bretagne, France

Alexander J. Travis
Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Biomedical Research Building II/III, 421 Curie Blvd, Philadelphia, PA 19104-6142, USA

Peter Platteeu
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium

Alan Trounson
Centre for Early Human Development, Monash Institute of Reproduction and Development, 27–31 Wright St, Clayton, Victoria 3168, Australia

The late Lonnie D. Russell
Formerly of Southern Illinois University School of Medicine, Carbondale, IL 62901, USA

Jonathan Van Blerkom
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309 and Colorado Reproductive Endocrinology, Rose Medical Center, Denver 80220, CO, USA

Gerald Schatten
Pittsburgh Development Center of the Magee Women's Research Institute, Pittsburgh PA 15213 and the Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA

André C. Van Steirteghem
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium

Contributors

Ann M. Lawler
School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Baltimore, MD 21287, USA

Françoise Shenfield
Reproductive Medicine Unit, University College Hospital and the Royal Free and University College Hospitals Medical School, the London Women's Clinic, Harley Street, London, UK

Ellen Matulich
Fertility Institute of New Orleans, 6020 Bullard Avenue, New Orleans, LA, USA

Cal Simerly
Pittsburgh Development Center of the Magee Women's Research Institute, Pittsburgh PA 15213 and the Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Christine Mauck
Contraceptive Research and Development (CONRAD) Program, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA

Joe Leigh Simpson
Department of Obstetrics and Gynecology, Baylor College of Medicine, 6550 Fannin, Houston, TX, USA

Eileen A. McLaughlin
Pest Animal Control CRC, GPO Box 284, Canberra, ACT 2601, Australia

Jorma Toppari
Department of Pediatrics and Physiology, University of Turku, Turku 20520, Finland

Shoukhrat Mitalipov
Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton OR, USA

Herman J. Tournaye
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium

Eberhard Nieschlag
Institute of Reproductive Medicine of the University (WHO Collaborating Centre for Research in Human Reproduction), Domagkstr. 11, D-48129, Münster, Germany

Charles Pineau
GERM-INSERM U.435, Campus de Beaulieu, Université de Rennes I, 35042 Rennes, Bretagne, France

Alexander J. Travis
Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Biomedical Research Building II/III, 421 Curie Blvd, Philadelphia, PA 19104-6142, USA

Peter Platteeu
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium

Alan Trounson
Centre for Early Human Development, Monash Institute of Reproduction and Development, 27–31 Wright St, Clayton, Victoria 3168, Australia

The late Lonnie D. Russell
Formerly of Southern Illinois University School of Medicine, Carbondale, IL 62901, USA

Jonathan Van Blerkom
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309 and Colorado Reproductive Endocrinology, Rose Medical Center, Denver 80220, CO, USA

Gerald Schatten
Pittsburgh Development Center of the Magee Women's Research Institute, Pittsburgh PA 15213 and the Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA

André C. Van Steirteghem
Center for Reproductive Medicine, University Hospital and Medical School, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium
Contributors

Donna L. Vogel
National Cancer Institute, 31 Center Drive, Bethesda, MD 20892-2440, USA

Don P. Wolf
Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton, OR, USA

Erik J. Woods
Cryobiology Research Institute, The Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, 1044 West Walnut Street, Indianapolis, IN 46202, USA

Lourens J. D. Zaneveld
Program for Topical Prevention of Conception and Disease (TOPCAD), Rush University, Chicago, IL, USA
Foreword

ART: today and beyond

Just think, prior to World War II, it was thought that the genetic message of our species was packaged in 48 chromosomes.

The 1950s saw what might be called the chromosomal revolution. In the early 1950s, I had a telephone call from Lawson Wilkins, Professor of Pediatrics at Johns Hopkins, who said that he had been at a medical meeting where an anatomist had indicated that it was possible to diagnose the sex of a cell and, therefore, of the individual, by examining a nerve cell under the microscope. Specifically, a large percentage of nuclei from females had a small unique granule or body. Lawson said “this was the damnest thing I ever heard.” He invited me to attend a meeting that afternoon with Dr. George Streeter, Director of the Carnegie Institute of Embryology, Dr. Carl Hartman, an eminent primatologist at the Institute, and the two of us to discuss this matter and see whether it had any clinical application. The result of this meeting was that it was decided that skin biopsies could be taken from several patients that Dr. Wilkins and I jointly had and who had problems of sexual differentiation. We reasoned that it might be possible, therefore, to make a nuclear sex determination of the individuals and to correlate that with the other criteria of sex identification. The amazing thing was that patients with Turner’s syndrome proved to be Barr body negative. Coincidentally, it had been the anatomist, Murray Barr, who had presented the paper that had intrigued Lawson Wilkins’ interest. Thus, we were forced to the conclusion that patients with Turner’s syndrome must have the Y chromosome.
However, a few years later, in 1956, Tjio and Levan showed that in the human there were but 46 chromosomes. Soon after that, in 1959, Charlie Ford showed that patients with Turner’s syndrome did not have XY sex chromosomes but were indeed characterized by having 45 chromosomes and only one sex chromosome, i.e., a single X. This was the same year that Lejeune had shown that patients with mongolism, later called Down syndrome, had an extra chromosome 21. By the end of the 1950s, clinical cytogenetics had become a reality.

On a parallel track, molecular genetics was having its own revolution. In 1953, Watson and Crick brought forth their blockbuster notion of the double helix. As a consequence, the concepts of Mendel, Garrod, and others acquired a molecular basis, with guanine, cytosine, thymine, and adenine becoming household words in homes tuned to the molecular age.

On still another track, another revolution was occurring. Chang, in 1958, using the rabbit, proved that a mammalian egg could be fertilized in vitro and develop into a normal rabbit. Twenty years later, Edwards and Steptoe achieved the first pregnancy in the human by what has come to be known clinically as in vitro fertilization (IVF).

The overall result is that in the early twenty-first century, all three of these revolutions are milling about in the same dish, that is the culture dish of the embryologist, who supervises on a more or less routine basis the union of the sperm and the egg by attractive forces that remain among nature’s mysteries.

While the clinician and the embryologist strive to get conditions just right to optimize the process of in vitro fertilization, it has now become possible to examine the chromosomes and indeed the molecular aspects of the genetic message along the way. It seems certain that, by the middle of the twenty-first century, the current diagnostic efforts will seem primitive indeed, but a beginning is being made in a very dynamic and rapidly moving field. It is possible to be comfortable in predicting that in due time therapy for chromosome and molecular abnormalities will be available to improve the human condition. Who could object to that?

Not to be forgotten is the fact that fertilization in vitro, with the gadgets to watch it and examine it along the way, has made all this possible. Furthermore, and most importantly, all these revolutions have taken place within the span of a single generation – clear evidence that we are not dealing with a mature discipline – on the contrary, we seem to be in the midst of an investigative whirlwind.

Therefore, the trinity of chromosomology, the molecular basis of genetics, and clinical IVF requires a “snapshot” from time to time so that all of those involved from the patient, and therefore the public, to the clinician and to the laboratory worker will know where we are and where we might go.

This is the eminently appropriate raison d’être for this snapshot – this book.

Howard W. Jones Jr.
Professor Emeritus, Eastern Virginia Medical School,
Norfolk, VA and
Professor Emeritus, Johns Hopkins University School of
Medicine, Baltimore, MD, USA