
Introduction

In physics every now and then one needs something to differentiate or integrate. This is the
reason why a novice in the field is simultaneously initiated into the secrets of differential
and integral calculus.

One starts with functions of a single variable, then several variables occur. Multiple
integrals and partial derivatives arrive on the scene, and one calculates plenty of them on
the drilling ground in order to survive in the battlefield.

However, if we scan carefully the structure of expressions containing partial derivatives
in real physics formulas, we observe that some combinations are found fairly often, but
other ones practically never occur. If, for example, the frequency of the expressions
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is compared, we come to the result that the first one (Laplace operator applied to a function
f ) is met very often, while the second one may be found only in problem books on calculus
(where it occurs for didactic reasons alone). Combinations which do enter real physics
books, result, as a rule, from a computation which realizes some visual local geometrical
conception corresponding to the problem under consideration (like a phenomenological
description of diffusion of matter in a homogeneous medium). These very conceptions
constitute the subject of a systematic study of local differential geometry. In accordance
with physical experience it is observed there that there is a fairly small number of truly
interesting (and, consequently, frequently met) operations to be studied in detail (which is
good news – they can be mastered in a reasonably short time).

We know from our experience in general physics that the same situation may be treated
using various kinds of coordinates (Cartesian, spherical polar, cylindrical, etc.) and it is
clear from the context that the result certainly does not depend on the choice of coordinates
(which is, however, far from being true concerning the sweat involved in the computation –
the very reason a careful choice of coordinates is a part of wise strategy in solving problems).
Thus, both objects and operations on them are independent of the choice of coordinates
used to describe them. It should be not surprising, then, that in a properly built formalism a
great deal of the work may be performed using no coordinates whatsoever (just what part of
the computation it is depends both on the problem and on the level of mastery of a particular
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2 Introduction

user). There are several advantages which should be mentioned in favor of these “abstract”
(coordinate-free) computations. They tend to be considerably shorter and more transparent,
making repeated checking, as an example, much easier, individual steps may be better un-
derstood visually and so on. Consider, in order to illustrate this fact, the following equations:

Lξ g = 0 ↔ ξ k gi j,k + ξ k
,i gk j + ξ k

, j gik = 0

∇γ̇ γ̇ = 0 ↔ ẍ i + 
i
jk ẋ j ẋ k = 0

∇g = 0 ↔ gi j,k − 
i jk − 
 j ik = 0

We will learn step by step in this book that the pairs of equations standing on the left and on
the right side of the same line always tell us just the same: the expression on the right may be
regarded as being obtained from that on the left by expressing it in (arbitrary) coordinates.

(The first line represents Killing equations; they tell us that the Lie derivative of g along
ξ vanishes, i.e. that the metric tensor g has a symmetry given by a vector field ξ . The second
one defines particular curves called geodesics, representing uniform motion in a straight
line (= its acceleration vanishes). The third one encodes the fact that a linear connection is
metric; it says that a scalar product of vectors remains unchanged under parallel translation.)

In spite of the highly efficient way of writing of the coordinate versions of the equations
(partial derivatives via commas and the summation convention – we sum on indices repeat-
ing twice (dummy indices) omitting the

∑
sign), it is clear that they can hardly compete

with the left side’s brevity. Thus if we will be able to reliably manipulate the objects occur-
ring on the left, we gain an ability to manipulate (indirectly) fairly complicated expressions
containing partial derivatives, always keeping under control what we actually do.

At the introductory level calculus used to be developed in Cartesian space R
n or in open

domains in R
n . In numerous cases, however, we apply the calculus in spaces which are not

open domains in R
n , although they are “very close” to them.

In analytical mechanics, as an example, we study the motion of pendulums by solving
(differential) Lagrange equations for coordinates introduced in the pendulum’s configuration
spaces, regarded as functions of time. These configuration spaces are not, however, open
domains in R

n . Take a simple pendulum swinging in a plane. Its configuration space is
clearly a circle S1. Although this is a one-dimensional space, it is intuitively clear (and one
may prove) that it is essentially different from (an open set in) R

1. Similarly the configuration
space of a spherical pendulum happens to be the two-dimensional sphere S2, which differs
from (an open set in) R

2.
Notice, however, that a sufficiently small neighborhood of an arbitrary point on S1 or

S2 is practically indistinguishable from a sufficiently small neighborhood of an arbitrary
point in R

1 or R
2 respectively; they are in a sense “locally equal,” the difference being

“only global.” Various applications of mathematical analysis (including those in physics)
thus strongly motivate its extension to more general spaces than those which are simple
open domains in R

n .
Such more general spaces are provided by smooth manifolds. Loosely speaking they

are spaces which a short-sighted observer regards as R
n (for suitable n), but globally
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Introduction 3

(“topologically,” when a pair of spectacles are found at last) their structure may differ
profoundly from R

n .
We can regard as an enjoyable bonus the fact that the formalism, which will be developed

in order to perform coordinate-free computations, happens to be at the same time (free of
charge) well suited to treating global geometrical problems, too, i.e. we may study the objects
and operations on them, being well defined on the manifold as a whole. Therefore, we speak
sometimes about global analysis, or the analysis on manifolds. All the above-mentioned
equations Lξ g = 0, ∇γ̇ γ̇ = 0 and ∇g = 0 represent, to give an example, equations on
manifolds and their solutions may be defined as objects living on manifolds, too.

The key concept of a manifold itself will be introduced in Chapter 1. The exposition is
mainly at the intuitive level. A good deal of material treated in detail in mathematical texts
on differential topology will only be mentioned in a fairly informative way or will even be
omitted completely. The aim of this introductory chapter is to provide the reader with a
minimal amount of material which is necessary to grasp (fully, already at the working level)
the main topic of the book, which is differential geometry on manifolds.
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1

The concept of a manifold

• The purpose of this chapter is to introduce the concept of a smooth manifold, including
the ABCs of the technical side of its description. The main idea is to regard a manifold as
being “glued-up” from several pieces, all of them being very simple (open domains in R

n).
The notions of a chart (local coordinates) and an atlas serve as essential formal tools in
achieving this objective.

In the introductory section we also briefly touch upon the concept of a topological space,
but for the level of knowledge of manifold theory we need in this book it will not be used
later in any non-trivial way.

(From the didactic point of view our exposition leans heavily on recent scientific knowl-
edge, for the most part on ethnological studies of Amazon Basin Indians. The studies proved
convincingly that even those prodigious virtuosos of the art of survival within wild jungle
conditions make do with only intuitive knowledge of smooth manifolds and the medicine-
men were the only members within the tribe who were (here and there) able to declaim
some formal definitions. The fact, to give an example, that the topological space underlying
the smooth manifold should be Hausdorff was observed to be told to a tribe member just
before death and as eyewitnesses reported, when the medicine-man embarked on analyzing
examples of non-Hausdorff spaces, the horrified individual preferred to leave his or her soul
to God’s hands as soon as possible.)

1.1 Topology and continuous maps

• Topology is a useful structure a set may be endowed with (and at the same time the
branch of mathematics dealing with these things). It enables one to speak about continuous
maps. Namely, in order to introduce a topology on a set X , one has to choose a system {τ }
of subsets τ of the set X , such that

1. ∅ ∈ {τ }, X ∈ {τ };
2. the union (of an arbitrary number) of elements from {τ } is again in {τ };
3. the intersection of a finite number of elements from {τ } is again in {τ }.
(So that the system necessarily contains the empty set as well as the set X itself, and is
closed with respect to arbitrary unions and finite intersections.) The elements of {τ } are

4

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18796-1 - Differential Geometry and Lie Groups for Physicists
Marian Fecko
Excerpt
More information

http://www.cambridge.org/9780521187961
http://www.cambridge.org
http://www.cambridge.org


1.1 Topology and continuous maps 5

called open sets and the pair (X, {τ }) is a topological space. Given two topological spaces
(X, {τ }) and (Y, {σ }), a map

f : X → Y

is said to be continuous if f −1(A) ∈ {τ } for any A ∈ {σ }, that is to say if the inverse image1

of any open set is again an open set.2 Moreover, if the map f happens to be bijective and
f −1 is continuous as well, f is called a homeomorphism (topological map); X and Y are
then said to be homeomorphic.

1.1.1 Verify that the “weakest” (coarsest) possible topology on a set X is given by the trivial
topology, where ∅ and X represent the only open sets available, whereas the “strongest”
(finest) topology is the discrete topology, where every subset is open (in particular, this is
also true for every point x ∈ X ); all other topologies reside “somewhere between” these
two extreme possibilities. �

1.1.2 Let {τ }0, {τ }1 be the trivial and the discrete topology respectively (1.1.1). Describe
all continuous maps

f : (X, {τ }a) → (Y, {τ }b) a, b ∈ {0, 1}
realizing thus that continuity of a map depends, in general, on the choice of topologies
both on X and Y . (For a = 1 (b arbitrary) and for a = 0 = b all maps are continuous; for
a = 0, b = 1 the only continuous maps are constant maps (x �→ y0, the same for all x).) �

1.1.3 Let

X
f→ Y

g→ Z ,

f, g being continuous. Show that the composition map

g ◦ f : X → Z

is continuous, too. �

1.1.4 Check that the notion of homeomorphism introduces an equivalence relation among
topological spaces (reflexivity, symmetry and transitivity are to be verified). �

• The reader may find it helpful to visualize homeomorphic spaces as being made of
rubber; Y can then be obtained from X by means of a deformation alone (neither cutting
nor gluing are allowed). Example: a circle, a square and a triangle are all homeomorphic,
the figure-of-eight symbol is not homeomorphic to the circle (provided that the intersection
in the middle of it is regarded as a single point).3

1 Recall that f −1 does not mean the inverse map here (this may not exist at all); f −1(A) denotes the collection of all elements in
X which f sends into A, i.e. the inverse image of the set A.

2 In elementary calculus continuity used to be defined in terms of distance; this turns out to be a particular case of the above
definition (the distance induces a topology, to be mentioned later).

3 Differential Topology by A. H. Wallace can be recommended as a nice introductory text about topology (see the Bibliography
for details).
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6 The concept of a manifold

One usually restricts oneself (for purely technical reasons, in order not to allow for
manifolds of some fairly complicated objects that we do not want to be concerned with)
to Hausdorff topological spaces. In these spaces (by definition), given any two points x, y,
there exist non-intersecting neighborhoods of them (open sets A, B, such that x ∈ A, y ∈
B, A ∩ B = ∅); one can thus separate any two points by means of open sets. From now
on Hausdorff spaces will be understood automatically when speaking about topological
spaces.

The fact that the Cartesian space R
n (ordered n-tuples of real numbers) represents a

topological space (where open sets coincide with those used in the elementary calculus of
n real variables) will be important in what follows.

1.1.5 Let d(x, y) be the standard Euclidean distance between two points x, y ∈ R
n , i.e.

d2(x, y) := (x1 − y1)2 + · · · + (xn − yn)2

and let

D(a, r ) := {x ∈ R
n, d(x, a) < r}

(open ball ≡ disk, centered at a, the radius being r ). A set A ∈ R
n is open if for any point

x ∈ A there exists an open ball centered at x which lies entirely in A. Check that this
definition of an open set meets the axioms of a topological space. This topology is called
the standard topology in R

n . �

1.2 Classes of smoothness of maps of Cartesian spaces

• Let A be an open set in R
n[x1, . . . , xn] and

f : A → R
m[y1, . . . , ym]

This means that we are given m functions of n variables

ya = ya(x1, . . . , xn) a = 1, . . . , m

If all partial derivatives up to order k exist and are continuous, then f is called a map of
class Ck . In particular, it is called continuous (k = 0), differentiable (k = 1), smooth
(k = ∞) and (real) analytic (if for all x ∈ A the Taylor series of ya(x) converges to the
function ya(x) itself: k = ω). In general, there clearly holds

C0(A, R
m) ⊃ C1(A, R

m) ⊃ · · · ⊃ C∞(A, R
m) ⊃ Cω(A, R

m).

Far less trivial is the fact that not a single inclusion is in fact equality.

1.2.1 Consider the function f : R → R, given by

f (x) = e− 1
x x > 0

f (x) = 0 x ≤ 0

Use this function to prove that in general Cω(A, R
m) �= C∞(A, R

m).
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1.3 Smooth structure, smooth manifold 7

Hint: show, that f (n)(0) = 0 for n = 0, 1, 2, . . . (so that the Taylor series in the neighborhood
of x = 0 gives a function which vanishes for positive x , too). �

1.3 Smooth structure, smooth manifold

• A tourist map may be regarded as a true map (in the mathematical sense of the word)

ϕ : TD → SP

where TD is a tourist district and SP is a sheet of paper. If the sheet of paper happens to be
in fact in a square paper exercise book, we have another map

χ : SP → R
2[x1, x2]

and their composition results finally in

ψ : TD → R
2 ψ ≡ χ ◦ ϕ

For a good map ψ should be a bijection and this makes it possible to assign a pair of real
numbers – its coordinates – to any point in TD.

In an effort to map a bigger part of a country, an atlas4 (a collection of maps) has proved
to be helpful. A good atlas should be consistent at all overlaps: if some part of the land
happens to be on two (or more) maps (close to the margins, as a rule), information obtained
from them must not be mutually contradictory.

If we enlarge the region to be mapped (district �→ country �→ continent, etc.), we first
observe annoying metric properties of the maps – the continents become (in comparison with
their shape on the globe) somewhat deformed and the intuitive estimation of the distances
becomes unreliable. This is a manifestation of the fact that ψ fails to be an isometry (see
Section 4.6); as a matter of fact such an isometry (of a part of the sphere to a part of a sheet
of paper) does not exist at all.5 Topologically, however, everything is still all right – even
if TD = all of America, ψ still remains a homeomorphism (the latter need not preserve
distances). But even this ceases to be the case abruptly at the moment we try to display
all the globe on a single map. It turns out, once again, that such a map (a bijective and
continuous map of a sphere onto a plane) does not exist; that is to say, more than one single
map – an atlas – is inevitable. An optimistic element in these contemplations lies in the fact
that in spite of the topological complexity of the sphere S2 (as compared with the plane),
its mapping is fairly simple when an atlas containing several maps is used. In a similar way
one can construct (highly practical) atlases of some other two-dimensional surfaces, like
T 2 = the surface of a tire (repairmen in a tire service will then be happy to mark the exact
position of a puncture into this atlas) or the exotic (1.5.9) Klein bottle K 2 (appreciated by
orienteering fans, mainly in sci-fi).

4 Atlas, the brother of Prometheus, hero of Greek mythology, keeps (as he used to do) the cope of heaven on his shoulders on the
title page of a series of detailed maps of various parts of Europe. They were published in 1595, one year after the death of the
author, Gerhard Kramer (Gerardus Mercator in Latin). Since then, every series of maps has been called an “atlas.”

5 There are several characteristics preserved by isometries and the sphere and the sheet of paper differ in some of them (see, e.g.,
the result of the computation of the Lie algebras of Killing fields in (4.6.10) and (4.6.13) or of the scalar curvature in (15.6.11)).
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8 The concept of a manifold

The aim, now, will be to formalize the idea of an atlas. This will result in the definition
of the crucial concept of a smooth manifold.

Let (X, {τ }) be a topological space and O ⊂ X an open set. A homeomorphism

ϕ : O → R
n[x1, . . . , xn]

is called a chart, or alternatively local coordinates.
Each point x ∈ O ⊂ X is then uniquely associated
with an n-tuple of real numbers – its coordinates.
The set O is known as a coordinate patch in this
context. So far we have introduced coordinates in a
single coordinate patch – in O. If we want to assign
coordinates to all points from X , we need an open
covering {Oα} of the space X (i.e.

⋃
α Oα = X ) and

local coordinates for each domain Oα

ϕα : Oα → R
n

(n being the same for all α). A collection of charts A ≡ {Oα, ϕα} is called an atlas on X .
If the intersection Oα ∩ Oβ is non-empty, a map

ϕβ ◦ ϕ−1
α : A → R

n, A ≡ ϕα(Oα ∩ Oβ) ⊂ R
n

called a change of coordinates is induced. Since it is a map of Cartesian spaces
(see Section 1.2), it makes sense to talk about its class of smoothness. Automatically (check
(1.1.3)) its class is C0, but it might be higher. If, given an atlas, all maps of this type happen
to be Ck or higher, it is called a Ck-atlas A.

An atlas may be supplemented by additional maps, provided that the consistency with
the maps already present is assured. A map

µ : O → R
n

is said to be Ck-related (and it may be added to A), if it is consistent with all maps (Oα, ϕα)
on the intersectionsO ∩ Oα , i.e. if the class of the map ϕα ◦ µ−1 is Ck or higher. If a Ck-atlas
A is supplemented consecutively with all maps, we are left with a unique maximal Ck-atlas
Â. This in turn endows X with a Ck-structure. A pair (X, Â) is called an (n-dimensional) Ck-
manifold (in particular, topological, differentiable, . . . , smooth, analytic). In this book we
will be concerned exclusively with6 smooth manifolds, or here and there (when Taylor series
are used) even analytic manifolds. The essential structure to be used implicitly throughout
the book and assumed to be available in all discussions and constructions is the smooth
structure on a manifold X .

Since an atlas A leads to the unique maximal atlas Â, for the practical construction of
a manifold it suffices to give the atlas A. In spite of this fact the definition of a manifold

6 This highly convenient option is offered by the result of the Whitney (“embedding”) theorem, to be mentioned later, see
Section 1.4.
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1.3 Smooth structure, smooth manifold 9

refers to the maximal atlas. This emphasizes the formal equality of rights of all charts
(local coordinates). The constitution (= definition) unambiguously states that the initial
charts from A are by no means privileged in Â with respect to those coming later (so that
there is no fear of them usurping a privileged position at any later moment). This does not
at all mean that privileged coordinates are of no importance in differential geometry. If
the smooth structure is the only structure available, all charts are to be treated equally. In
applications, on the other hand, there are typically additional structures on manifolds. Then,
of course, particular coordinates tailored to these structures (adapted coordinates) would
play a privileged role from the practical point of view.

The simplest n-dimensional manifold is clearly R
n itself. A possible atlas is comprised

of a single chart, given by the identity map

ϕ ≡ id : R
n[x1, . . . , xn] → R

n[x1, . . . , xn]

This atlas is trivially smooth (or analytic as well; there are no intersections to spoil it)
and the maximal atlas generated by this atlas defines the standard smooth structure in R

n .
Any other chart from this atlas corresponds to curvilinear coordinates in R

n (like the polar
coordinates in a part of the plane R

2).
The next two exercises deal with the construction of smooth atlases on spheres and

projective spaces.

1.3.1 On a circle S1 of radius R we introduce local coordinates x, x ′ as shown on the figure
(this is called the stereographic projection). On higher-dimensional spheres S2, . . . , Sn a

natural generalization of this idea results
in coordinates r, r′. Verify that:

(i) on the intersection of the patches, where
the primed and unprimed coordinates are
in operation, we find for S1 and Sn re-
spectively the following explicit transition
relations:

x ′ = (2R)2

x
r′ = (2R)2

r

r
r

(ii) in this way an analytic atlas composed of two charts has been constructed on Sn – the sphere Sn

is thus an n-dimensional analytic manifold;
(iii) if the complex coordinates z and z′ are introduced on S2

r ↔ (x, y) ↔ z ≡ x + iy r′ ↔ (x ′, y′) ↔ z′ ≡ x ′ + iy′

then the transition relations are

z′ = (2R)2/z̄ z̄ ≡ x − iy

Hint: on Sn a projection is to be performed onto n-dimensional mutually parallel planes,
touching the north and south poles respectively (in these planes r ≡ (x1, . . . , xn) represent
common Cartesian coordinates centered at the poles). Then r′ = λr and one easily finds λ
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10 The concept of a manifold

from the observation that in the (two-dimensional) plane given by the poles and the point
P the situation reduces to S1. �

1.3.2 The real projective space RPn is the set of all lines in R
n+1 passing through the

origin. The complex projective space CPn is introduced similarly – one should replace
R �→ C in the preceding definition. (Here, a complex line consists of all complex multiples
of a fixed (non-vanishing) complex vector (point of C

n+1) z, so that it is a two-dimensional
object from a real point of view.)

(i) Introduce the structure of an n-dimensional smooth man-
ifold (= local coordinates) on RPn .

(ii) The same for CPn (it is 2n-dimensional).
(iii) Show that the states of an n-level system in quantum me-

chanics are in one-to-one correspondence with the points
of CPn−1.

(iv) Show that CP1 = S2 (in the sense of (1.4.7)) ⇒ states
with spin 1

2 correspond to unit vectors n in R
3.

Hint: (i) one line (a point from RPn) consists of those points of R
n+1 which may be obtained

from a fixed (x0, x1, . . . , xn) using the freedom (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn); in the
part of R

n+1 where x0 �= 0 the freedom enables one to make 1 from the first entry of the
array (visually this means that the point of intersection of the line with the plane x0 = 1
has been used as a representative of the line); the other n numbers are to be used as local
coordinates on RPn (they are the coordinates in the plane x0 = 1 mentioned above; see
the figure for n = 1, try to draw the case n = 2): (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn) ∼
(1, ξ 1, . . . , ξ n) for x0 �= 0, ⇒ (ξ 1, . . . , ξ n) are coordinates (there); in this way obtain step-
by-step (n + 1) charts,7 with the last one coming from (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn) ∼
(η1, . . . , ηn, 1) for xn �= 0; (ii) in full analogy, ξ, . . . , η are now complex n-tuples, giving rise
to 2n real coordinates; (iii) two non-vanishing vectors in a Hilbert space, one of them being a
complex constant multiple of the other, correspond to a single state; (iv) spin 1

2 is a two-level
system. �

• From two given manifolds (X, Â) and (Y, B̂), we can form a new manifold called the
Cartesian product. This new manifold is denoted by the symbol X × Y . As a set, it is the
Cartesian product X × Y (points being ordered pairs), an atlas is constructed in the exercise.

1.3.3 Let (X, Â) and (Y, B̂) be smooth manifolds and let

ϕα : Oα → R
n ψa : Sa → R

m

represent two charts on X and Y respectively. Show that

ϕα × ψa : Oα × Sa → R
m+n

(x, y) �→ (ϕα(x), ψa(y)) ∈ R
n+m x ∈ Oα, y ∈ Sa

7 In this context the coordinates (x0, x1, . . . , xn ) in R
n+1 are said to be the homogeneous coordinates (of the points in RPn ).

Note that they are not local coordinates on RPn in the sense of the definition of a manifold, since they are not in one-to-one
correspondence with the points (they are official coordinates only in R

n+1).
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