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Some preliminaries from number theory

In this chapter we provide the necessary prerequisites from multiplicative num-
ber theory regarding primes, divisibility and approximation by rationals.

1.1 Divisibility in Z. Euclidean algorithm

The basic objects of our story are the set of natural numbers N = {1, 2, 3, . . . }
and the set of integers Z. In addition, we often deal with the set of rationals Q
and the set of real numbers R. An element of R \Q is called irrational. Shortly
we will need the complex numbers C as well.

The set of integers Z forms a ring equipped with the usual addition and
multiplication. The operation of division, the inverse to multiplication, applies
to pairs (a, b) with b � 0. We say that a number b � 0 divides a (writing b | a)
or, equivalently, b is a divisor of a or a is divisible by b or a is a multiple of b,
if a = bq holds for some integer q. The number q is called the quotient of a
by b. The number 0 is divisible by any integer b � 0. If a � 0 then the number
of its divisors is finite. We use the notation b � a to say that b does not divide a.

Let us list some simple properties of divisibility in Z.

Lemma 1.1 If c | b and b | a then c | a.

Proof Since b = cq1 and a = bq2, we have a = c(q1q2). �

Lemma 1.2 If all terms in an equality a1 + · · · + an = b1 + · · · + bk, except
one, are multiples of a fixed integer c then the exceptional term is a multiple
of c as well.

Proof Writing all terms except bk, say, in the form ai = c̃ai and b j = c̃b j, we
see that

bk = c(̃a1 + · · · + ãn − b̃1 − · · · − b̃k−1).
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2 Some preliminaries from number theory

This means that bk can be represented in the form bk = cb for some integer b,
and hence bk is a multiple of c. �

The floor or greatest integer function is denoted �x� and is defined to be
the greatest integer ≤ x. Thus �π� = 3 and �−e� = −3. The ceiling or least
integer function �x� is defined, analogously, to be the least integer ≥ x. Clearly
�x� ≤ x < �x� + 1. We let {x} denote the fractional part of x, that is, x − �x�;
hopefully there will be no confusion with ordinary set notation.

Theorem 1.3 (Division with remainder) For any integer a and any positive
integer b, there exist integers q and r such that

a = bq + r and 0 ≤ r < b. (1.1)

These numbers q and r are defined uniquely.

Proof The existence of such a pair q, r is clear; we take q = �a/b�. Then
q ≤ a/b < q + 1; hence bq ≤ a < b(q + 1) and so 0 ≤ r = a − bq < b.

Assuming two representations (1.1), the second being of the form

a = bq1 + r1 and 0 ≤ r1 < b, (1.2)

we deduce from equations (1.1) and (1.2) that

0 = b(q − q1) + (r − r1) and |r − r1| < b. (1.3)

Hence b divides the difference r − r1, which is possible only when r = r1,
by the inequality in (1.3). The equality r = r1 implies q = q1 by the equality
in (1.3). �

An integer dividing each of the integers a1, a2, . . . , an is called their com-
mon divisor; the largest of the common divisors is called the greatest common
divisor and denoted by gcd(a1, a2, . . . , an). If gcd(a1, . . . , an) = 1, the num-
bers a1, . . . , an are called coprime (or relatively prime). If every pair of the
set {a1, . . . , an} is coprime then the set is called pairwise coprime. (The lat-
ter requirement is stronger, as the example of the set {6, 10, 15} shows: these
numbers are coprime but not pairwise coprime.)

The following two lemmas can be easily verified using the above definitions.

Lemma 1.4 If a is a multiple of b then the set of common divisors of a and b
coincides with the set of divisors of b; in particular, gcd(a, b) = |b|.
Lemma 1.5 If a = bq+r then the set of common divisors of a and b coincides
with the set of common divisors of b and r; in particular, gcd(a, b) = gcd(b, r).
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1.1 Divisibility in Z. Euclidean algorithm 3

The last statement substantiates the following classical Greek algorithm for
computing the greatest common divisor of two numbers a, b ∈ Z:

Euclidean algorithm Let a, b ∈ Z with a ≥ b > 0. Defining r−1 = a and r0 =

b, consider the following successive application of division with remainder
(Theorem 1.3):

r−1 = r0q0 + r1, 0 < r1 < r0,

r0 = r1q1 + r2, 0 < r2 < r1,

...

rn−1 = rnqn + rn+1, 0 < rn+1 < rn,

rn = rn+1qn+1.

(1.4)

Then the last nonzero remainder rn+1 is the greatest common divisor of a and b.

Critically, the procedure (1.4) terminates at some step in view of the follow-
ing chain of inequalities:

r0 > r1 > · · · > rn−1 > rn > rn+1 > 0.

By (1.4) and Lemma 1.5 we get

gcd(a, b) = gcd(r−1, r0) = gcd(r0, r1) = gcd(r1, r2) = · · ·
= gcd(rn, rn+1) = gcd(rn+1, 0) = rn+1.

Hence the last nonzero remainder rn+1 in (1.4) is indeed the required greatest
common divisor of a and b.

Lemma 1.6 For any integer m > 0 we have gcd(am, bm) = m gcd(a, b).

Proof Multiply all equalities in (1.4) by m. �

Lemma 1.7 Let δ be a common divisor of a and b. Then

gcd
(a
δ
,

b
δ

)
=

gcd(a, b)
|δ|

and, in particular,

gcd
( a
gcd(a, b)

,
b

gcd(a, b)

)
= 1.

Proof By Lemma 1.6 we obtain

gcd(a, b) = gcd
(a
δ
δ,

b
δ
δ
)
= gcd

(a
δ
,

b
δ

)
|δ|. �

We leave the proofs of Lemmas 1.8–1.10 below to the reader.

Lemma 1.8 If gcd(a, b) = 1 then gcd(ac, b) = gcd(c, b).
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4 Some preliminaries from number theory

Lemma 1.9 If gcd(a, b) = 1 and ac is divisible by b then c is divisible by b.

Lemma 1.10 If each of the numbers a1, . . . , an is coprime with each of the
numbers b1, . . . , bk then the products a1 · · · an and b1 · · · bk are coprime.

An integer that is a multiple of all the numbers a1, . . . , an is called their
common multiple. The smallest positive common multiple is called the least
common multiple or lcm and denoted by lcm(a1, . . . , an).

Lemma 1.11 The set of common multiples of two given numbers coincides
with the set of multiples of their least common multiple.

Proof Let M denote a common multiple of the given integers a and b. Then
M = ak for k ∈ Z, since M is a multiple of a, and the number M/b = ak/b is
an integer. Define d = gcd(a, b), a = da1 and b = db1; by Lemma 1.7 we have
gcd(a1, b1) = 1. By Lemma 1.9 the equality M/b = a1k/b1 ∈ Z implies that
k is divisible by b1, that is, k = b1t = bt/d for t ∈ Z. Therefore

M =
ab
d

t =
ab

gcd(a, b)
t, t ∈ Z, (1.5)

and, as can be seen, any such M is a multiple of both a and b. We get the
least common multiple by specialization t = ±1: lcm(a, b) = |ab|/ gcd(a, b).
Thus, formula (1.5) can be written in the required form M = lcm(a, b)t with
t ∈ Z. �

The previous lemma gives a simple and efficient algorithm for computing
the least common multiple for a set a1, a2, . . . , an of arbitrary length n ≥ 2.
Namely, we have the formula

lcm(a1, a2, a3, a4, . . . , an) = lcm(lcm(. . . lcm(lcm(lcm(a1, a2), a3), a4), . . . ), an),

while the least common multiple of just two numbers is computed by

lcm(a, b) =
|ab|

gcd(a, b)
.

Exercise 1.12 Show that, for a pair of relatively prime integers a and b, the
linear equation ax − by = 1 has infinitely many solutions in integers x, y.

Hint This can be split into two parts: First, show (using either an inductive
argument or the Euclidean algorithm) that there exists at least one solution of
the equation, say x0, y0, and, second, that the pair x = x0 + bt, y = y0 + at is a
solution for any t ∈ Z. �
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1.2 Primes 5

1.2 Primes

An integer exceeding 1 always has at least two distinct divisors, namely, 1 and
itself. If these two divisors exhaust the list of all positive divisors of such an
integer then the integer is called a prime number; otherwise, the integer (> 1)
is called a composite number.

Lemma 1.13 The least positive divisor, different from 1, of an integer a > 1
is a prime.

Proof The set A = {2, 3, . . . , a} is not empty and finite and contains at least
one divisor (namely, a) of the given integer a; thus we can choose the smallest
such divisor, say b. If b is not prime then it has a divisor c such that 1 < c < b,
so that c ∈ A. But then Lemma 1.1 implies that c divides a, which contradicts
our choice of b. �

The next lemma, while simple, is very potent.

Lemma 1.14 The least positive divisor, different from 1, of a composite inte-
ger a > 1 does not exceed

√
a.

Proof Let b > 1 be the least positive divisor of a. Write a = bc; since a is
composite we have b < a, so that c > 1. As both b and c are divisors of a and
b is the least divisor we have b ≤ c = a/b, implying that b2 ≤ a. �

The next result, attributed to Euclid of Alexandria, circa 300 BCE, illustrates
the sophistication of Greek number theory.

Theorem 1.15 (Euclid) The set of primes is infinite.

Proof If not, we could write the (nonempty) set of primes as

{p1 = 2, p2 = 3, p3, . . . , pn}
and consider the least positive divisor, different from 1, of the number

p1 p2 · · · pn + 1.

The divisor is prime, by Lemma 1.13, and it is not on our list because it is
relatively prime to each of p1, . . . , pn. Thus, we arrive at a contradiction. �

An important property (as well as the main difficulty in use) of primes is
their role as ‘building blocks’ or ‘atoms’ in the study of Z from the multiplica-
tive point of view.

Lemma 1.16 Every integer a is either a multiple of a given prime p or co-
prime with p.
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6 Some preliminaries from number theory

Proof Indeed, gcd(a, p) is p or 1, as a divisor of p. �

Lemma 1.17 If a product of some terms is divisible by p then at least one of
the terms is divisible by p.

Proof Otherwise, each term is coprime with p by Lemma 1.16, while Lemma
1.10 implies that the product has to be coprime with p as well. �

Theorem 1.18 (Fundamental theorem of arithmetic) Every integer greater
than 1 may be decomposed into a product of primes (that is, factorised), and
this decomposition is unique (up to the ordering of the primes in it).

Proof Existence. This is shown by induction on a > 1. For the number a = 2,
its factorisation is trivial (owing to the primality of 2). If a > 2 then it is
either a prime (and hence its factorisation involves only the number itself) or
composite. In the latter case it can be written in the form a = pa1, where p is
the prime divisor from Lemma 1.13, and for the number a1,

√
a ≤ a1 < a, we

use the induction hypothesis.
Uniqueness. Assume, contrary to what we want to prove, that numbers with

non-unique factorisation exist, and choose the least in the set of such numbers,
say a:

a = p1 p2 · · · pn = q1q2 · · · qk, (1.6)

p1, p2, . . . , pn and q1, q2, . . . , qk are primes.

On the one hand, the right-hand side of (1.6) is divisible by q1, and hence at
least one term on the left-hand side of (1.6) (say p1, without loss of generality)
is divisible by q1 by Lemma 1.17. On the other hand, each term on the left-
hand side of (1.6) is a prime and therefore p1 has to coincide with q1; after
reduction by p1 = q1 in (1.6) we obtain

p2 · · · pn = q2 · · · qk. (1.7)

At least one side of (1.7) involves a non-empty product (otherwise we would
have a = p1 = q1, two identical prime factorisations of the number a, contra-
dicting its choice above). Thus, (1.7) records two different factorisations of a
number a1 satisfying 1 < a1 < a. The latter contradicts the minimality of our
choice of a. �

Two very important problems in number theory, with numerous applications
to the theory and practice of information security and encryption, are deciding
whether a given number is prime and finding large prime numbers. The latter
problem is related to the distribution of primes in the set of positive integers. In
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1.2 Primes 7

fact, it is not hard to show that there are arbitrarily long sequences of consecu-
tive composite numbers (for example, the sequence n! + i for i = 2, 3, . . . , n).
However, it is conjectured that there are infinitely many twin primes, that is,
infinitely many pairs p, q of primes with q− p = 2. Very recent (2013) work by
Zhang [173], as yet unpublished, has proved that there are infinitely many pairs
of primes that differ by some N < 70 000 000; subsequently his methods were
refined by the Polymath project to N ≤ 4680 and by Maynard to N ≤ 600.
The latter number may seem feeble as a replacement for 2 but in fact it is an
enormous accomplishment.

Another famous conjecture (‘Goldbach’s conjecture’) states that any even
integer greater than 2 is a sum of two primes. The recent work of Helfgott [73]
reports on a proof of its weaker three-primes version.

The following result, known as the prime number theorem, is a fundamen-
tal theorem on the distribution of primes. It was almost guessed, from much
numerical evidence, by Gauss in 1791; Chebyshev provided some evidence
for it in 1850, and finally Hadamard and de la Vallée Poussin independently
proved it in 1896 using methods of complex analysis. Chebyshev’s work was
good enough to prove Bertrand’s postulate: there is a prime in the interval
[n − 1, 2n − 1] for each n ≥ 3.

The main feature of the proofs of Hadamard and de la Vallée Poussin is
the use of the Riemann zeta function ζ(s), defined in the complex half-plane
Re s > 1 by the (slowly convergent for small s > 1) series

ζ(s) =
∞∑

n=1

1
ns
. (1.8)

Theorem 1.19 (Prime number theorem) Let π(x) be the number of primes
less than or equal to x, for any real number x. Then

lim
x→∞

π(x)
x/ log x

= 1,

where log x = ln x denotes the logarithm of x to the base e.

The details of this proof are a little tangential to our goals (the interested
reader may find them in many places including [77, Chapter II]), but the fol-
lowing curious equivalent form of the prime number theorem will be useful
later.

Theorem 1.20 (Rate of growth of lcm) Let dn = lcm(1, 2, . . . , n) be the least
common multiple of the first n consecutive natural numbers. Then

lim
n→∞

log dn

n
= 1.
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8 Some preliminaries from number theory

It is clear that n! is a common multiple of the numbers 1, 2, . . . , n, and
it grows as (n/e)n

√
2πn(1 + o(1)) according to Stirling’s asymptotic formula

(which can be replaced by rougher estimates that we will establish below
in (2.37)). Theorem 1.20 tells us that the actual growth of the least common
multiple in this case is, roughly speaking, en, which is of course asymptotically
a better estimate than the one arising from n! .

Exercise 1.21 (see, for example, [77, Chapter I, Theorem 3]) Show the equiv-
alence of Theorems 1.19 and 1.20.

1.3 Fibonacci numbers and the complexity of the Euclidean
algorithm

The sequence of Fibonacci numbers F0, F1, F2, F3, . . . is defined by the simple
linear recurrence relation

Fn+2 = Fn+1 + Fn (1.9)

and the initial data F0 = 0, F1 = 1. It is a sequence on which the Euclidean
algorithm (see the text after Lemma 1.5)

a = bq0 + r1, 0 < r1 < b,

b = r1q1 + r2, 0 < r2 < r1,

r1 = r2q2 + r3, 0 < r3 < r2,

...

rn−1 = rnqn + rn+1, 0 < rn+1 < rn,

rn = rn+1qn+1

(1.10)

(here a ≥ b > 0) works for more steps than might be expected: since the
quotients q0, q1, . . . , qn+1 are integers greater than or equal to 1, the following
estimates hold:

rn+1 ≥ F1, rn ≥ F2, rn−1 ≥ F3, . . . ,

r1 ≥ Fn+1, b ≥ Fn+2, a ≥ Fn+3.

Lemma 1.22 If k is the number of steps (divisions with remainder) in the
Euclidean algorithm then for given initial data a ≥ b > 0 we have a ≥ Fk+1

and b ≥ Fk.

Our immediate aim is to deduce a general form for the Fibonacci sequence.
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1.3 Fibonacci numbers and the complexity of the Euclidean algorithm 9

This will allow us to give an upper bound on the number of steps in the Eu-
clidean algorithm (the complexity of the algorithm) for arbitrary initial data
a ≥ b > 0.

Exercise 1.23 Before moving to the rest of this section, find and prove a
closed-form expression for the Fibonacci numbers.

Now let a1(n), a2(n), . . . , am(n) be arbitrary functions of the nonnegative in-
teger argument n. The recurrence equation

φ(n +m) + a1(n)φ(n +m − 1) + · · · + am−1(n)φ(n + 1) + am(n)φ(n) = 0 (1.11)

is called a linear homogeneous difference equation of order m, and any func-
tion φ(n) satisfying (1.11) for all n = 0, 1, 2, . . . is called its solution. It is not
difficult to see that the choice of initial data

φ(0) = φ0, φ(1) = φ1, . . . , φ(m − 1) = φm−1

determines a solution φ(n), n = 0, 1, 2, . . . , of (1.11) uniquely.

Lemma 1.24 Let φ(1)(n), φ(2)(n), . . . , φ(k)(n) be k solutions of (1.11). Then the
function

φ(n) = c1φ
(1)(n) + c2φ

(2)(n) + · · · + ckφ
(k)(n), n = 0, 1, 2, . . . ,

where c1, c2, . . . , ck are arbitrary constants from the ground field ( for example,
Q or R), is a solution of (1.11) as well.

Equivalently, the set of solutions of (1.11) forms a linear space. Further-
more, we can always construct m linearly independent solutions of the equa-
tion, φ(1)(n), φ(2)(n), . . . , φ(m)(n), by choosing the initial data in such a way that
the m-vectors ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(1)
0

φ(1)
1
...

φ(1)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ(2)

0

φ(2)
1
...

φ(2)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ(m)

0

φ(m)
1
...

φ(m)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are linearly independent.

Lemma 1.25 A general solution of (1.11) can be written in the form

φ(n) = c1φ
(1)(n) + c2φ

(2)(n) + · · · + cmφ
(m)(n), n = 0, 1, 2, . . . ,

where φ(1)(n), φ(2)(n), . . . , φ(m)(n) is a fixed basis (defined above) in the solution
space, while c1, . . . , cm are arbitrary constants.
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10 Some preliminaries from number theory

Proof Let φ(n), n = 0, 1, 2, . . . , be a solution of (1.11). Then the constants
c1, . . . , cm are determined by the system of linear equations

c1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ(1)

0

φ(1)
1
...

φ(1)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + c2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ(2)

0

φ(2)
1
...

φ(2)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + · · · + cm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ(m)

0

φ(m)
1
...

φ(m)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(0)
φ(1)
...

φ(m − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . �

Exercise 1.26 Prove Lemma 1.24 and finalise the proof of Lemma 1.25.

From now on we switch to the simplest case, when the coefficients a1, . . . ,

am−1, am of the difference equation do not depend on n and, in addition, the
characteristic polynomial

λm + a1λ
m−1 + · · · + am−1λ + am = 0 (1.12)

of (1.11) has exactly m distinct nonzero roots λ1, . . . , λm. (For the case of re-
peated roots, we recommend [20].)

Theorem 1.27 (Solution to recursion with no repeated roots) A general solu-
tion of the linear homogeneous difference equation with constant coefficients
has the form

φ(n) = c1λ
n
1 + · · · + cmλ

n
m, n = 0, 1, 2, . . . .

Proof Note that the functions φ( j)(n) = λn
j , where j = 1, . . . ,m, form a funda-

mental solution system, that is, a basis in the solution space. The fact that the
solutions are linearly independent follows from the nonvanishing of a Vander-
monde determinant (see, for example, [89, Section 2.1] for more information
about the latter). �

Lemma 1.28 The Fibonacci numbers are also given by the explicit formula

Fn =
αn − βn

√
5

,

where α = (1 +
√

5)/2 and β = (1 − √5)/2 (with αβ = −1).

Proof Indeed, the characteristic polynomial λ2 −λ−1 of the difference equa-
tion (1.9) has roots α, β. Letting

Fn = c1α
n + c2β

n

and setting n = 0 and n = 1, we find c1 = −c2 = 1/
√

5. �

Exercise 1.29 (Pell numbers) The Pell numbers satisfy the recurrence rela-
tion Pn+2 = 2Pn+1 + Pn with initial conditions P0 = 0 and P1 = 1. Give a
closed-form expression for the Pell numbers.
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