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Edgeworth Expansions for the Wald and GMM Statistics
for Nonlinear Restrictions

Bruce E. Hansen∗

1.1 introduction

The Wald test is a popular test of statistical hypotheses largely because it is
simple to compute. There are many reasons, however, to believe that the Wald
test is generically a poor choice as a test of nonlinear hypothesis. One reason
frequently mentioned is that the Wald statistic is not invariant to the alge-
braic formulation of the hypothesis. Gregory and Veall (1985) and Lafontaine
and White (1986) showed in Monte Carlo simulations the potentially large
consequences of alternative algebraic formulations. Park and Phillips (1988)
formalized this finding by showing that the coefficients of the Edgeworth ex-
pansion of the Wald statistic depend on the formulation.

Separately, Newey and West (1987) proposed a distance generalized
method of moments (GMM) statistic for nonlinear hypotheses. In the con-
text of linear regression, their statistic is simply the GMM criterion function
evaluated at the restricted estimates. When the hypothesis is a linear restric-
tion on the parameters, their test corresponds to the Wald statistic. When
the hypothesis is nonlinear, the two statistics differ. A striking feature of the
GMM distance statistic is that it is invariant to the algebraic formulation of
the hypothesis. (The invariance follows directly from its definition in terms
of the criterion function.) The GMM distance statistic also has the advantage
of being robust to heteroskedasticity (if a heteroskedasticity-consistent co-
variance matrix is used to define the GMM criterion). This is in contrast to the
likelihood ratio statistic, which is invariant to formulation of the hypothesis
but is not robust to heteroskedasticity. For a pedagogical description of this
statistic, see section 9.2 of Newey and McFadden (1994).

Little is known, however, about the finite sample behavior of the GMM
statistic. This chapter attempts to fill this gap by providing an Edgeworth

∗ This research was supported by a grant from the National Science Foundation. I thank Yuichi
Kitamura and Ken West for helpful comments and discussions.
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10 Bruce E. Hansen

expansion for the GMM statistic in the leading case considered by Park and
Phillips (1988). We use the explicit matrix approach to Edgeworth expansions
initiated by Park and Phillips (1988) and push their approach one step further
by using explicit matrix formulas for all our expressions. The advantage of this
approach is that we are able to calculate greatly simplified expressions for our
Edgeworth expansions, which enable us to make direct comparisons between
statistics.

We rederive the Park–Phillips Edgeworth expansion for the Wald statistic
along with that for the GMM statistic. We find the striking result that the
Edgeworth expansion for the GMM statistic is a strict simplification of that
for the Wald statistic. Thus the chi-square approximation for the GMM statistic
is as good as that for any algebraic formulation of the Wald statistic – at least
up to the level of the Edgeworth expansion approximation.

Gregory and Veall (1985) provided dramatic simulation evidence that two
alternative formulations of the same hypothesis lead to very different finite
sample behavior of the Wald statistic. We update their experiment and con-
trast the performance of the Wald statistics with the GMM statistic. We also
compare the performance of the tests when heteroskedasticity-robust covari-
ance matrices and GMM weight matrices are used. The simulations show that,
if the GMM statistic is computed with a weight matrix calculated under the al-
ternative hypothesis, its performance is nearly identical to the Gregory–Veall
“good” form of the Wald statistic, whereas if the GMM statistic is computed
with the weight matrix calculated under the null hypothesis, the size distortion
virtually disappears. The results show that, even in samples as small as n = 20,
test statistics can be made robust to unknown heteroskedasticity without any
loss of control over Type I error.

The chapter is organized as follows. Section 1.2 states the model and test
statistics. Section 1.3 describes alternative methods to calculate the covariance
matrix of the estimates and the weight matrix for GMM estimation. Section 1.4
presents our main results. Section 1.5 is a Monte Carlo simulation. A brief
conclusion follows in Section 1.6. Appendix A is a restatement of the Park–
Phillips (1988) Edgeworth expansion (for reference). Appendix B contains
the proof of Theorem 1.1 (the Edgeworth expansion for the Wald statistic).
Appendix C contains the proof of Theorem 1.2 (the Edgeworth expansion for
the GMM statistic).

A Gauss program that calculates the GMM statistics described in this chap-
ter can be downloaded from my Web page <www.ssc.wisc.edu/˜bhansen>.

1.2 linear regression with nonlinear hypotheses

The model is a linear regression

yi = x′
iβ + ei

E (xi ei ) = 0,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18430-4 - Econometric Theory and Practice: Frontiers of Analysis and Applied Research
Edited by Dean Corbae, Steven N. Durlauf and Bruce E. Hansen
Excerpt
More information

http://www.cambridge.org/9780521184304
http://www.cambridge.org
http://www.cambridge.org


Edgeworth Expansions for the Wald and GMM Statistics 11

i = 1, . . . , n, where xi and β are each k × 1. Let β0 denote the true value of β.

The goal is to test the nonlinear hypothesis

H0 : g(β) = 0 (1)

H1 : g(β) �= 0,

where g : Rk → R. We are interested in testing H0 against H1.
Let

β̂ = (X′ X)−1(X′Y)

be the ordinary least squares (OLS) estimator of β, and let

Vn = (X′ X)−1�n(X′ X)−1 (2)

be an estimator of the covariance matrix of β̂, where �n is an estimate of
nE

(
xi x′

i e
2
i

)
. We discuss specific choices below.

A common test statistic for H0 is the Wald statistic

W = n g(β̂)′
(
Ĝ

′
VnĜ

)−1
g(β̂)

Ĝ = ∂

∂β
g(β̂).

The strengths of the Wald statistic are that it is easy to compute but asymptot-
ically χ2

1 under H0 and very general conditions. A major weakness, however,
is that the statistic is not invariant to the formulation of the hypothesis g.

A less commonly applied test of H0 is the GMM distance statistic intro-
duced by Newey and West (1987) and discussed in Newey and McFadden
(1994, Section 9.2). This statistic is defined as the difference in the GMM cri-
terion evaluated at estimates calculated under the null and alternative and
constructed with the same efficient weight matrix. For the regression model,
the GMM criterion function is

J (β) = (Y − Xβ)′ X�−1
n X′ (Y − Xβ) ,

where �n again is an estimate of nE
(
xi x′

i e
2
i

)
.

The unrestricted GMM estimator minimizes J (β) over β ∈ Rk, that is,

β̂ = argmin
β∈Rk

J (β)

= (X′ X)−1(X′Y),

and is identical to the OLS estimator. Note that J (β̂) = 0.

The restricted GMM estimator minimizes J (β) subject to constraint (1):

β̃ = argmin
g(β)=0

J (β). (3)

When g(β) is nonlinear, a closed-form expression for β̃ does not exist. How-
ever, in general β̃ is quite simple to calculate because the criterion J (β) is
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12 Bruce E. Hansen

quadratic in β. Minimizing a quadratic function subject to a nonlinear con-
straint is a straightforward numerical optimization problem.

The Newey–West GMM distance test statistic is the difference in the crite-
rion function evaluated at the two estimates:

DM = J (β̃) − J (β̂)

= min
g(β)=0

(Y − Xβ)′ X�−1
n X′ (Y − Xβ) . (4)

The statistic (4) has several wonderful advantages over the Wald statistic.
Primarily, it is invariant to the formulation of the hypothesis (1). This is because
the parameter space {β : g(β) = 0} is invariant to its algebraic formulation. The
lack of invariance is a major problem with implementation of the Wald statistic
when g is nonlinear. In the special case in which g is linear, however, the two
statistics are numerically identical (if the same �n is used).

A by-product of the computation of the test statistic (4) is the restricted
estimate β̃. For reference, an estimate of the covariance matrix for β̃ can be
calculated as

Ṽn = Vn − VnĜ
(
Ĝ

′
VnĜ

)−1
Ĝ

′
Vn,

where Vn is defined in (2). (For a derivation, See Section 9.1 of Newey and
McFadden, 1994).

1.3 choice of variance and weight matrix

The statistics depend on the choice of �n. The Wald statistic is typically calcu-
lated from the unrestricted estimates β̂. One choice for �n is the Eicker–White
estimator

�̂n =
n∑

i=1

xi x′
i ê2

i (5)

êi = yi − x′
iβ̂,

For this is asymptotically valid for the specified model without additional aux-
iliary assumptions. An alternative choice is the OLS estimator

�̂0
n = X′ Xσ̂ 2 (6)

σ̂ 2 = 1
n − k

n∑
i=1

ê2
i ,

which is valid under the conditional homoskedasticity assumption
E

(
e2

i | xi
) = σ 2.

The GMM statistic (4) may also be computed setting �n to equal either
�̂n or �̂0

n, the latter being valid only under the assumption of homoskedas-
ticity. These choices correspond to computing the weight matrix under the
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Edgeworth Expansions for the Wald and GMM Statistics 13

alternative hypothesis because they are computed from the unrestricted esti-
mates. Another choice is to compute the weight matrix from estimates obtained
under the null hypothesis. This requires iterated GMM. The first step sets �n

to equal (5 ) or (6) and calculates the first-step estimator β̃ as in (3). In the
second step we calculate

�̃n =
n∑

i=1

xi x′
i ẽ

2
i

ẽi = yi − x′
i β̃

for the general case, or

�̃0
n = X′ Xσ̃ 2,

σ̃ 2 = 1
n − k + 1

n∑
i=1

ẽ2
i

under the homoskedasticity assumption. Then, if one sets�n = �̃n or�n = �̃0
n,

(3) and (4) are recomputed as a second-step minimization.
Newey and West (1987) and Newey and McFadden (1994) do not provide

any guidance about whether the weight matrix should be computed under the
null (�̃n) or alternative ( �̂n). Because �̃n is computed from the restricted
estimates, we would expect it to be a more efficient estimator under the null
hypothesis and thus to provide better finite-sample Type I error approxima-
tions at the cost of a somewhat greater computational burden and an uncertain
effect on the power of the test.

1.4 edgeworth expansions

Park and Phillips (1988) used an Edgeworth expansion to show that the non-
invariance of the Wald statistic to the formulation of (1) is responsible for
the poor size properties of the Wald statistic. Our goal in this section is to
use the same Edgeworth expansion argument to show that the GMM statis-
tic has an Edgeworth approximation to the chi-square distribution superior
to that of the Wald statistic and thus should be expected to have better size
properties.

Following Park and Phillips (1988), we derive our expansions under the
assumptions that e | X ∼ N (0, In) and X′ X = nIk and that this knowledge has
been used to simplify the statistics; thus, �n = nIn. Although this assumption
is not relevant for applications, it places the focus on the nonlinearity. Under
these conditions, if g were linear, then both W and DM would have exact χ2

1
distributions; thus, the divergence from the χ2

1 is due only to the nonlinearity
of g.
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14 Bruce E. Hansen

On the assumption that g(β) is three-times continuously differentiable,
define

G(β)
k × 1

= ∂

∂β
g(β),

D(β)
k × k

= ∂2

∂β∂β ′ g(β), and

C(β)
k × k2

= ∂

∂β

(
(vec D(β))′)

,

where vec (A) stacks the columns of the matrix A. Let G = G(β0), D = D(β0),
and C = C(β0).

Define the projection matrices

P = G(G′G)−1G′

P = I − P.

Note that these are defined if G′G > 0 (which holds when rank(G) = 1), which
is a standard condition for hypothesis testing.

Let FW denote the cumulative distribution function (CDF) of W, let FDM

denote that of DM, and let F denote the CDF of the χ2
1 distribution.

Theorem 1.1 The asymptotic expansion of W as n → ∞ is given by

FW(x) = F
(

x − n−1 (G′G)−1 (
α1x + α2x2 + α3x3)) + o(n−1), (7)

where

α1 = −1
2

tr
(
PDPD

) + 1
4

(
tr

(
PD

))2
,

α2 = 3
2

(tr (PD))2 − tr (PDD) − 1
2

tr (D) tr (PD) − 2
3

tr (PC ⊗ G) ,

and

α3 = 1
4

(tr (PD))2
.

Theorem 1.2 The asymptotic expansion of DM as n → ∞ is given by

FDM(x) = F
(

x − n−1 (G′G)−1
α1x

)
+ o(n−1), (8)

where α1 is defined in Theorem 1.

The Edgeworth expansion (7) for W was derived by Park and Phillips (1988).
The main difference is that our expression (7) provides a much more compact

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18430-4 - Econometric Theory and Practice: Frontiers of Analysis and Applied Research
Edited by Dean Corbae, Steven N. Durlauf and Bruce E. Hansen
Excerpt
More information

http://www.cambridge.org/9780521184304
http://www.cambridge.org
http://www.cambridge.org


Edgeworth Expansions for the Wald and GMM Statistics 15

set of expressions for the coefficients α1, α2, α3, which allows a direct compar-
ison with the expansion for the GMM statistic. The Edgeworth expansion (8)
for DM appears to be new.

There are several striking implications of Theorems 1.1 and 1.2.
First, the expansion for the GMM statistic is a strict simplification of that

for the Wald statistic. The Wald statistic is approximately chi-square after a
cubic transformation. The GMM statistic is approximately chi-square after a
linear transformation, and the linear term is identical to that for the Wald
statistic. Thus, up to order o(n−1), the expansion for the GMM statistic is less
distorted from the chi-square than is that for the Wald statistic.

Second, the expansion (8) shows that the CDF of (1 − n−1 (G′G)−1
α1)−1

DM is F (x) + o(n−1), and thus only a scale adjustment is necessary to achieve
an o(n−1) approximation to the chi-square distribution. This is a necessary
condition for a statistic to be Bartlett correctable.

Third, because DM is invariant to the formulation of (1), so is its distribution
FDM, and hence, so is its Edgeworth expansion. It follows that the coefficient
α1 is invariant to the formulation of (1). This is also the leading term in the
Edgeworth expansion for W. It follows that the Wald statistic’s noninvariance
to the formulation (1) appears in the Edgeworth expansion (7) only through
the higher-order coefficients α2 and α3. This generalizes the finding of Park and
Phillips (1988), who found that α1 was invariant to the formulation (1) in their
examples. Indeed, the invariance of α1 to the formulation of (1) is generally
true.

1.5 gregory–veall example

We illustrate the size performance of the GMM distance test in a replication
of the Gregory–Veall (1985) experiment. The model is

yi = β0 + β1x1i + β2x2i + ei

with β1β2 = 1 and E (ei | xi ) = 0. In our experiments, we generate x1i , x2i , and
ei as mutually independent, indepent and identically distributed (iid), N(0, 1)
variables. We consider two formulations of the Wald statistic based on the
hypotheses

HA
0 : β1 − 1

β2
= 0

and

HB
0 : β1β2 − 1 = 0.

Let WA and WB denote the Wald statistics corresponding to these two formu-
lations of the null hypothesis. Although Gregory–Veall only examined the be-
havior of the Wald statistic constructed with a conventional covariance matrix
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16 Bruce E. Hansen

Table 1.1 Percentage Rejections at the 5% Asymptotic Level (Tests
Constructed Using Homoskedastic Covariance Matrix)

Case Test n = 20 n = 30 n = 50 n = 100 n = 500

β1 = 10, β2 = 0.1 WA .372 .317 .257 .189 .105
WB .066 .059 .055 .052 .051
DMalt .066 .059 .056 .052 .051
DMnull .039 .042 .046 .048 .050

β1 = 5, β2 = 0.2 WA .222 .183 .145 .115 .069
WB .065 .061 .055 .053 .049
DMalt .065 .061 .055 .053 .050
DMnull .038 .044 .046 .049 .049

β1 = 2, β2 = 0.5 WA .091 .082 .071 .059 .049
WB .065 .058 .055 .052 .052
DMalt .067 .059 .056 .053 .052
DMnull .040 .043 .046 .048 .051

β1 = 1, β2 = 1 WA .047 .043 .045 .046 .049
WB .078 .069 .062 .055 .051
DMalt .065 .060 .056 .052 .050
DMnull .039 .043 .046 .047 .049

estimate, we also consider the performance of the Wald and GMM statistics
constructed with Eicker–White covariance matrix estimates.

As shown by Park and Phillips (1988), the expansion of the WA statistic has
coefficients α2 and α3, which are very large, especially when β2 is small; yet,
the expansion of the WB statistic has coefficients α2 and α3, which are quite
small, predicting that the WA statistic will have larger size distortions than the
WB statistic.

We also consider the GMM statistic, which is invariant to the formulation
HA

0 and HB
0 . Let DMalt denote this statistic if the weight matrix is calculated

using the unrestricted estimates (the alternative hypothesis), and let DMnull

denote the statistic if the weight matrix is calculated using the restricted esti-
mates (the null hypothesis).

We calculate the finite sample size (Type I error) of asymptotic 5% tests,
using a selection of parameter values and sample sizes from n = 20 to n = 500,
from 100,000 Monte Carlo replications.2 The results are presented in Tables 1.1
and 1.2. As predicted by our theory, the WA statistic has substantial size dis-
tortion when β2 is small even if the sample size is quite large regardless of
the method to compute the covariance matrix. The size distortions of the
WB and DMalt statistics are quite similar and quite modest in comparison to
the WA statistic. In addition, the size distortions of WB and DMalt are insen-
sitive to the true value of the parameters. If the homoskedastic covariance

2 The standard error for the estimated rejection frequencies is about .0007.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-18430-4 - Econometric Theory and Practice: Frontiers of Analysis and Applied Research
Edited by Dean Corbae, Steven N. Durlauf and Bruce E. Hansen
Excerpt
More information

http://www.cambridge.org/9780521184304
http://www.cambridge.org
http://www.cambridge.org


Edgeworth Expansions for the Wald and GMM Statistics 17

Table 1.2 Percentage Rejections at the 5% Asymptotic Level (Tests
Constructed Using Eicker–White Covariance Matrix)

Case Test n = 20 n = 30 n = 50 n = 100 n = 500

β1 = 10, β2 = 0.1 WA .410 .342 .270 .198 .107
WB .024 .097 .078 .064 .052
DMalt .125 .097 .078 .064 .052
DMnull .051 .050 .051 .051 .050

β1 = 5, β2 = 0.2 WA .258 .204 .158 .121 .073
WB .122 .095 .077 .064 .053
DMalt .123 .096 .078 .064 .053
DMnull .049 .050 .050 .051 .051

β1 = 2, β2 = 0.5 WA .124 .104 .084 .064 .051
WB .123 .096 .079 .062 .052
DMalt .124 .098 .079 .063 .052
DMnull .051 .050 .051 .049 .050

β1 = 1, β2 = 1 WA .094 .077 .065 .058 .051
WB .133 .104 .083 .067 .052
DMalt .123 .096 .077 .064 .052
DMnull .049 .049 .049 .050 .049

matrix estimate is used, these tests have minimal size distortion (because the
true error is indeed homoskedastic) but have moderate size distortion if the
heteroskedasticity-robust covariance matrix estimate is used.

The performance of the DMnull statistic is stunning. Regardless of the pa-
rameterization, sample size, or covariance matrix estimation method, the Type
I error is excellent. If the heteroskedasticity-robust covariance matrix estima-
tor is used, the estimated Type I error ranges from 4.9 to 5.1%, which is not
statistically different from the nominal 5.0% level. Thus, the robust DMnull

statistic has dramatically better size performance than the robust WB statistic
or the robust DMalt statistic.

1.6 conclusion

We have extended the explicit matrix approach to Edgeworth expansions de-
veloped by Park and Phillips (1988), extended their Edgeworth expansion for
the Wald statistic, and developed a new Edgeworth expansion for the GMM
statistic. The major limitation of our results is that they are calculated for the
restrictive setting of a normal regression with known error variance. Variance
estimation would dramatically complicate the expansions. It would be quite
desirable to relax this restriction in future work.

Our simulation reports near-perfect performance of the statistic DMnull.

A theoretical explanation of this finding would be an important avenue for
future research.
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