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CHAPTER 1: INTRODUCTION 

1.1: What is Nonmonotonic Reasoning? 

The goal of Artificial Intelligence (AI) is to improve our understanding of intelligent 
behavior through the use of computational models. One of the few things researchers 
in this young science commonly agree upon is the importance of know ledge for 
intelligence. Thus the study of techniques for representing knowledge in computers 
has become one of the central issues in AI. 

Of course, it would be convenient if we could tell our computers what we want them 
to know in natural language. But so far this is just a dream. We thus need artificial, 
formal languages for representing knowledge which can be handled more easily by 
computers. Formal languages have the advantage of allowing for a much higher de­
gree of precision and clarity than any natural language - admittedly at the cost of 
flexibility and adaptability. 
If our formal knowledge representation languages are to be more than collections of 

meaningless strings, if they are to represent anything at all, we have to show how ex­
pressions and symbols are related to the (part of the) world we want to represent, that 
is we have to define a semantics for these languages. At this point formal logic plays 
an important role. 

Logic is, first of all, the study of inference. But the perspective of the logician is 
normative, not empirical or descriptive. The separation between knowledge given in 
an explicit, declarative form and knowledge which is implicit, that is can be inferred 
from the given premises, makes it necessary to come up with a criterion for the val­
idity of inferences. This criterion itself must be based in some wayan the meaning of 
the formulae used for expressing the knowledge. 

The discussion about the role of logic in AI is as old as AI itself. The relation 
between human reasoning and the theoretically sound reasoning formalized in logic 
has always been a matter of debate, particularly in the light of GOdel's famous imposs­
ibility theorems. We share the views expressed by Pat Hayes (Hayes 77), Robert 
Moore (Moore 82) and Wolfgang Bibel (Bibel 84). Logic - and logic here does not 
necessarily mean classical first order logic - is of fundamental importance to AI since, 
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2 Chapter 1: Introduction 

besides providing a proof theory, it gives us a clear and precise way of assigning 
meaning to symbols and of judging the validity of inferences based on this meaning. 

We do not claim that logic is the only possible way of doing this, nor do we claim 
that logic by itself solves the problems of AI. Logic separates valid from invalid con­
clusions, but it says nothing about what beliefs to adopt in specific situations where 
limited resources may be available and the cost of computation has to be taken into ac­
count. Moreover, logic is based on ontological assumptions (the existence of a domain 
of identifiable nonchanging objects, the existence of nonchanging relations between 
these objects) which may not be adequate for some purposes. But it should be clear 
that whoever proposes a 'nonlogical' representation formalism has to find other, 
hopefully equally clear and intuitive, ways of assigning meaning to his language and 
hence providing a criterion for distinguishing between semantically justified and un­
justified inferences. 

The motivation behind the development of classical logic at the end of the last cent­
ury was to put mathematical reasoning on a precise formal foundation. Of course, the 
reasoning of a mathematician trying to establish a mathematical result differs from 
everyday reasoning. The knowledge we base our decisions on in real life is never as 
precise and complete as in the ideal setting of this analytical science. We should, there­
fore, not be astonished that classical logic does not model all forms of everyday rea­
soning adequately. The main topic of this book is to show how some of the less than 
ideal forms of human reasoning can be formalized. What we are looking for is a 
precise mathematical theory of commonsense reasoning. 

Classical logic has the following property: if a formula p is derivable from a set of 
premises Q then p is also derivable from each superset of Q. The reason should be 
clear: every proof of p from Q is, by the definition of proof in classical logic, also a 
proof of p from each superset of Q. This property is called the monotonicity of 
classical logic. 

To formalize human commonsense reasoning something different is needed. 
Commonsense reasoning is frequently not monotonic. In many situations we draw 
conclusions which are given up in the light of further information. The 'canonical' 
example is the flying ability of birds. If we know that Tweety (one of the most famous 
animals in AI circles) is a bird, we tend to draw the conclusion that it flies since birds 
typically fly. Given the information that it is a penguin we certainly withdraw our 
former conclusion but - and this is important - without withdrawing any of our 
former premises. We still believe Tweety is a bird and still believe that birds, typi­
cally, fly. Such forms of reasoning which allow additional information to invalidate 
old conclusions are called nonmonotonic. 
If the notion of nonmonotonic reasoning is understood in a broad sense, then 

probabilistic reasoning can also be subsumed: additional evidence, obviously, can de­
crease the conditional probability of a statement in a probabilistic setting. However, 
probabilistic reasoning - as possibilistic or fuzzy reasoning - has usually been treated 

Cambridge University Press
978-0-521-18130-3 - Nonmonotonic Reasoning: Logical Foundations of Commonsense
Gerhard Brewka
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521181303
http://www.cambridge.org
http://www.cambridge.org


Chapter i: introduction 3 

numerically. Numbers are used to represent the degree of plausibility, certainty, con­
firmation or whatever. The standard use of the term nonmonotonic reasoning is more 
restricted, being confined to nonnumerical, logic based approaches. 

I shall not discuss any of the numerical approaches in this book. This does not mean, 
however, that I think they are unimportant. Numbers certainly have their advantages. 
But one of the common views underlying the research in this area is that we should 
try to find out how far we can get without them. Some interesting recent results, for 
example in (Geffner, Pearl 88), indicate a close relation between nonmonotonicity and 
infinitesimal probability. The theory of infinitesimal probabilities might tum out to be 

one way of providing nonmonotonic formalisms with a semantics. I shall not, 
however, investigate further this possibility in this book. For a survey of results about 
the relationship between nonmonotonicity and probability see (Pearl 89) which also 
contains references to further relevant literature. 

Some readers may wonder whether it really is impossible to handle the Tweety 
example in classical logic. How about the following representation? 

(1) '\Ix. BIRD(X) A -,EXCEPTIONAL-BIRD(X) :::) FLIES(x) 

(2) '\Ix. EXCEPTIONAL-BIRD(x) == PENGUIN(x) v DEAD(x) v .... 

(3) BIRD(1'WEETY) 

However, this makes it necessary to list all possible exceptions explicitly. There are 
so many unforeseeable circumstances in which something potentially can go wrong 
with a bird' s flying ability that this in itself is an impossible task. And even if we were 
able to come up with a complete list of exceptional birds the above representation still· 
would be unsatisfactory: we have to show that 1'WEETY is not a penguin, not dead, etc. 
in order to derive from these formulae that 1'WEETY flies. 

We would like to be able to derive that TwEETY flies when there is no information 
that TwEETY is exceptional without having to prove that TwEETY is not exceptional. 
This is beyond the power of classical logic. 

It is interesting to compare this first order representation with a corresponding rep­
resentation in the programming language Prolog. One feature that distinguishes 
Prolog from first order logic is the treatment of negation. NOT P is true in Prolog 
whenever P cannot be derived (negation as failure). This makes the following rep­
resentation of the Tweety example possible: 

FLIESCx) :- BIRDCx), not EXCEPTIONAL-BIRDCx). 

EXCEPTIONAL-BIRDCx) :- PENGUINCx). 

BIRD(1'WEETY). 

Since EXCEPTIONAL-BIRD(TwEETY) cannot be proven Prolog derives NOT 
EXCEPTIONAL-BIRD(TwEETY). Note that this derivation is not possible in first order 
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4 Chapter 1: Introduction 

logic from the corresponding set of implications. This together with BIRD(TWEETY) 
allows us to derive FLIES(TwEETY) via the first rule. If we add 

PENGUIN(TwEETY). 

then FLIES(TwEETY) can no longer be derived since now EXCEPTIONAL­
BIRD(TwEETY) is provable. Prolog, hence, is nonmonotonic. 

There have always been AI systems which, like Prolog, were able to draw some sort 
of nonmonotonic conclusions. An early example was the planning system PLANNER 
(Hewitt 72) with its nonmonotonic THNOT-operator. This operator, applied to a 
proposition, failed when the proposition could be proven and succeeded otherwise. 

Another type of nonmonotonic system in common use for many years, particular in 
expert system tools, is the frame system. Frames are representations of object classes 
consisting of a collection of slot-value pairs. These pairs describe typical values of 
certain attributes (slots) of members of the particular class. Moreover, the frames 
form a sub/superclass hierarchy. In case of a conflict the most specific information 
wins. For example, using the frame language of the expert system tool BABYLON (di 
Primio, Brewka 85) one might define two frames as follows: 

(defframe CAR 

(slots (WHEELS 4) (SEATS 5) (CYLINDERS 4))) 

(defframe SPORTS CAR 

(supers CAR) 

(slots (CYLINDERS 6)) 

The supers-specification in the second definition states that SPORTS CAR is a subclass 
of CAR. Given a particular instance of SPORTS CAR, say SPEEDY, we derive that it has 
6 cylinders, 5 seats and 4 wheels. If we add information that sportscars typically have 
2 seats, i.e. if we change the second frame definition to 

(defframe SPORTS CAR 

(supers CAR) 

(slots (SEATS 2) (CYLINDERS 6))) 

then it is concluded that SPEEDY has 2 seats and not 5, an example of the nonmono­
tonic behaviour of frame systems based on the principle that more specific informa­
tion is to be preferred. The following diagram shows from where SPEEDY inherits 
information in each case: 

Cambridge University Press
978-0-521-18130-3 - Nonmonotonic Reasoning: Logical Foundations of Commonsense
Gerhard Brewka
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521181303
http://www.cambridge.org
http://www.cambridge.org


Chapter 1: Introduction 

original knowledge base 

CAR 
WHEELS 4 
SEATS 5 
CYLINDERS 4 

t subclass 

SPORTS CAR 
CYLINDERS 6 

t-
SPEEDY 

WHEELS 
SEATS 
CYLINDERS 

augmented knowledge base 

CAR 
WHEELS 4 
SEATS 5 
CYLINDERS 4 

subclass 

SPORTSCAR 
CYLINDERS 6 
SEATS 2 

t instance 

SPEEDY 
WHEELS 
SEATS 
CYLINDERS 

5 

But if such systems and programming tools have been in use already, why was it nec­
essary to think about such complicated things as nonmonotonic logics at all? The 
answer is that the existing tools have either been too restrictive and could not be gen­
eralized without a formal theory, or, when they were more general, they produced 
results which were not understood well enough. This was, for instance, the case with 
PLANNER where the user was responsible for avoiding circular dependencies. Such 
dependencies could lead to groundless belief or non-terminating programs 
(McDermott, Doyle 80). 

We do not want to depend only on the system developer's intuitions. They may be 
commonly agreed in simple, restricted examples, but in more complicated cases intui­
tion is no longer a sufficient guide. Moreover, the logics will enable us to prove theo­
rems about the behaviour of various systems and tell us how far we can go with ex­
tending them. There seems to be no alternative: we have to give our intuitions a 
formal grounding. We need precise mathematical definitions of nonmonotonic infer­
ence which can be given a semantic justification. 

1.2: Types of Nonmonotonicity 

Nonmonotonic reasoning is not a single phenomenon. Various different types can be 
distinguished. Let us first have a somewhat closer look at four of them: 

1. Default Reasoning 
The need for nonmonotonic reasoning arises whenever our knowledge is incomplete 
and does not allow for the sound derivation of the conclusions necessary to base our 
decisions, plans and actions on. Of course, in less ideal settings than mathematics this 
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6 Chapter 1: Introduction 

is the rule, not an exception. Very often we are forced to act in spite of such gaps in 
our knowledge, i.e. we have to fill those gaps, to 'jump' to conclusions which do not 
follow logically from what we know ('logically' here is to be taken in the sense of 
classical logic, of course). These conclusions, then, are less than certain. They may be 
called beliefs or assumptions. In the light of additional information it may tum out 
that we have 'jumped' to a wrong conclusion. The conclusion then has to be retracted. 

We do not choose blindly among possible extensions of our knowledge. We do not 
simply flip a coin. There are many cases where our choice can be rationally guided. 
Much of our experience of the world is available in the form of general rules which 
are not universally true; they may have exceptions but they express what is true under 
normal conditions. 'Birds (typically) fly' is one example. 

Such rules are very convenient, easy to learn and remember, and they can guide our 
choices of how to fill gaps in our knowledge when necessary. In the absence of con­
flicting information, the rule about the flying ability of birds justifies preferring the 
belief 'Tweety flies' to the belief 'Tweety doesn't fly'. R~les with exceptions are also 
called defaults and reasoning based on them default reasoning. The conclusions ob­
tained from defaults are less than certain, i.e. default reasoning is a form of plausible 
reasoning. 

Some researchers additionally distinguish between 

(1) rules of the form 'An A is typically B' or 'a normal A is B' and 

(2) rules expressing statistical facts like 'most A are B'. 

They claim that prototypical reasoning based on the first type of rules has nothing at 
all to do with statistical reasoning (Reiter, Criscuolo 82), (Nutter 87). 

This claim seems somewhat overstated. In psychology the term 'prototype' is used to 
denote an instance, possibly imaginary, of a class of objects with the characteristic 
properties of the class members. Prototypes can be used for two purposes: we match 
objects against them in order to decide class membership, and if we know that an 
object is a member of a certain class we tend to ascribe to it the properties of the 
prototype. 

But what makes properties characteristic? How do we create our prototypes? We 
still do not understand these phenomena very well. However, the role of prototypes is 
to enable reasonable guesses to be made. They would certainly not be very useful if 
they did not lead to good decisions in most cases. This indicates that there must be at 
least some intricate, possibly very indirect, connection between the notions 'typically' 
and 'most'. Admittedly, 'most' here has to be understood as relative to a certain con­
text, as 'most amongst those objects we will possibly encounter in every day life'. This 
excludes all the dead birds that ever lived on earth from consideration: most of these 
certainly do not fly. We can possibly see a prototype as a compilation of 
(nonnumerical) probabilistic knowledge into a form which allows for efficient use. 
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Chapter i: introduction 7 

I shall not pursue these issues further here. I use the term 'default' in the sense of a 
rule with possible exceptions, be the reasons for adopting the rule of a statistical, 
prototypical, methodological ('working hypotheses'), or decision-theoretic nature 

(taking the costs of possible errors into account as in the case of the presumption of 
innocence in law). 

As we shall see, the standard formalizations of default reasoning do not syntactically 
distinguish between safe, irrefutable knowledge and plausible or tentative knowledge. 
The only way to distinguish between the certain and the defeasible parts of a knowl­
edge base is to inspect the proofs. Consequently, these logics do not model any loss of 
plausibility when, for instance, long chains of defaults are needed to derive a conclu­
sion. The logics are based on the view that jumping to a conclusion means assuming 
that the conclusion is true and has the same impact on further derivations as any other 
premise. In this sense the handling of defaults differs from any probabilistic treatment 
- unless infinitesimal probabilities are used (Pearl 89). 

2. Autoepistemic Reasoning 
Assume one of your colleagues asks you whether John McCarthy is going to give a 
talk at your department next week. You probably say no (unless your department is at 
Stanford). But nobody told you that there will be no such talk. How did you know the 
answer? You probably have reasoned along the following lines: if there were a talk 
there would have been an announcement, or I would have received an electronic mail, 
or one of my colleagues would have told me about it, or I would have heard about it 
from somewhere else. Anyway, if there were such a talk I would know about it. But I 
do not. Hence, there (unfortunately) is no talk given by John McCarthy next week in 
our department. 

Moore (Moore 85) has called this form of reasoning autoepistemic, since it involves 
reasoning about one's own knowledge. Autoepistemic reasoning follows the pattern 

I. If statement x were true I would know it. 

II. I don't know whether x is true. 

III. Therefore x is not true. 

It is important that the second antecedent in this pattern is not a premise but can be 
derived from the knowledge at hand. Otherwise we would not have nonmonotonicity. 

Here is the standard example. Let us assume the knowledge base of an agent contains 

(1) if someone is my brother I know it. 

(2) John is my brother. 

and there is no information in the knowledge base which allows to conclude that Peter 
is my brother. Then we conclude 

Peter is not my brother. 
since 
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8 Chapter i: introduction 

I don't know that Peter is my brother. 
can, in an intuitive sense to be made precise later, be derived from the premises. 
However, adding the information 

(3) Peter is my brother. 

to the premises makes, obviously, the previous conclusion impossible. 
Autoepistemic reasoning is a form of sound reasoning: after the addition of (3) we 

know that (1) must have been wrong when we used it to derive Peter is not my 
brother. The wrong conclusion was possible only because the premise was wrong. 

What, then, has this to do with nonmonotonic reasoning? Look at (1) again. We are 
in a position to say that this proposition was wrong with respect to the former knowl­
edge base. But this does not mean that we have to throw (1) away for that reason. It is 
quite possible (and reasonable to assume) that (1) is absolutely right now, in the new 
state of knowledge. The meaning of the proposition has simply changed. It refers to 
our knowledge, and if the knowledge changes, its meaning changes correspondingly. 

The nonmonotonicity of autoepistemic reasoning is thus a consequence of the fact 
that the meaning of statements about one's knowledge is context-sensitive, or - in 
other words - these statements are indexical. For a more detailed analysis of this type 
of nonmonotonic reasoning we refer to (Moore 85). 

Since plausible default reasoning and autoepistemic reasoning are so very different 
one would not necessarily expect that a common formalization is possible. Konolige, 
however, - as we shall see in Section 3.3 - came up with a quite surprising result: de­
fault logic, one of the most important formalizations of default reasoning, and the 
logic developed by Moore for autoepistemic reasoning are equivalent, in a sense to be 
made precise later. This seems to suggest that different types of reasoning do not nec­
essarily imply different formalizations. 

3. Representation Conventions 
Assume you want to know whether there is a train from Bonn to Munich at 10.00 
a.m. At the station you find a timetable. Let us assume that the timetable mentions no 
train to Munich leaving at 10.00 a.m. You will conclude that there is no train to 
Munich at that time. This conclusion is probably not based on a default like 'There is 
typically no train at 10.00 to Munich'. 

You know that railroad officials follow a certain implicit convention: the convention 
that information about train connections missing from the timetables is simply false, 
i.e. if there is no train connection mentioned then there is none.! 

Such conventions are economical and convenient because they make the exchange of 
information very efficient. The conventions are usually left implicit: there is no extra 

1 Of course, combinations of conventions and defaults are possible and frequent. Our focus here, 
however, is the distinction between different types of commonsense reasoning. 
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Chapter 1.' Introduction 9 

note on the timetable that connections missing from the timetable don't exist. It is 
assumed that everybody has learned how to use such timetables in the right way. 

If, on the other hand, the convention were made explicit, then sound logical reason­
ing would lead to our conclusion: if there were a 10.00 train to Munich then our 'all 
trains are there' convention would have been violated, i.e. the premise that connec­
tions missing from the timetable do not exist would be false. 

Assume that, later, an additional connection between Bonn and Munich at 10.00 is 
established. The timetable has to be augmented accordingly. This makes our earlier 
conclusion underivable, but the convention is still the same: this timetable is complete. 
As in the case of autoepistemic reasoning nonmonotonicity is an effect of the indexical 
meaning of our convention: 'this timetable' refers to another timetable after the 
addition of an entry. 

Such communication and information storing conventions are very common in the 
theory of databases and have also been studied formally there. In many cases the 
closed-world assumption (CWA) captures the effects of these conventions: 

Definition 1.1: Let T be a set of formulae. We say that p is derivable from T under 
the closed-world assumption iff 

T u ASS(T) j- P 

where ASS(T) .'= {-qj q is atomic and not T j - q}. 

The time table from our train example, for instance, can be represented as a set of 
atomic formulae of the form CONNECTION(x,y,t) stating that there is a train connec­

tion from x to y starting in x at time t. Assume CONNECTION(BONN, MUNICH, 10.00) 
is not contained in this set. Then this formula is underivable from T, the description 
of the time table. Hence -,CONNECTION(BONN, MUNICH, 10.00) is in ASS(T) which 
implies that this formula is derivable from T under the CW A. 

Unfortunately, the CWA can lead to inconsistency. If, for instance, T={a v b}, then 
-,a as well as -,b are in ASS(T) which - together with a v b - is inconsistent. This 
shows that the CW A is not general enough to capture all the interesting cases of non­
monotonic reasoning. See (Genesereth, Nilsson 87) for an overview of various sub­
cases where there is no danger of becoming inconsistent. 

Conventions and autoepistemic reasoning certainly are closely related. Knowledge 
about our own knowledge is often based on knowledge about communication conven­

tions. We know that we would know about a talk of John McCarthy since we know 
how people communicate. However, the fact that we would know about such a talk 
itself is not a convention (it may be a consequence of conventions) as it is no conven­
tion that we know all our brothers. And there are clearly cases of autoepistemic rea­
soning having nothing at all to do with conventions (for instance if you believe that 
your car did not explode since otherwise you would have heard it). It therefore seems 
justified to treat the two as different types of nonmonotonic reasoning. 
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10 Chapter 1: Introduction 

4. Reasoning in the Presence of Inconsistent Information 
Nonmonotonic reasoning, interestingly, not only arises when the knowledge is in­
complete, but also when the knowledge is too complete, i.e. inconsistent. Assume you 
come home in the evening and fmd the following short note on the table: Hi, I went to 
the cinema with John, the children are visiting Grandma, Peter will visit us on 
Monday 17th. See you later. You immediately realize that Monday is not the 17th, i.e. 
the information at hand is inconsistent. But does that mean that you do not know 
where the children are? 

You probably isolate the inconsistent subpart of the information and remain agnostic 
with respect to Peter's visit. But you do not throwaway the rest. You believe that the 
children are visiting Grandma and that your husband is in the cinema. 

However, if you suddenly remember that Grandma is on holiday in Paris, then this 
additional information will certainly cause you to withdraw the belief about where the 
children are. The additional information made other parts of your knowledge incon­
sistent and conclusions based on these parts are withdrawn. 

The example shows that every agent who is able to draw reasonable conclusions 
based on possibly inconsistent information must reason nonmonotonically. 

Another form of reasoning in which some parts of the knowledge have to be disre­
garded in certain cases is counterfactual reasoning (Lewis 73; Ginsberg 86). A 
counterfactual is a statement of the form 'if p then q' (denoted p > q) where p is 
known or expected to be false. Typical examples are 'If the electricity hadn't failed, 
dinner would have been ready on time' or 'If you had thought a little bit harder you 
wouldn't have made this mistake' or 'If you were not writing this book you could go 
to the beach with us'. If we were to interpret conditionals as material implications 
then they would be always true, because their preconditions are false. 

We distinguish, however, between true and false counterfactuals. Roughly, the truth 
of a counterfactual p > q can be determined as follows: add p to your world descrip­
tion. This renders the description inconsistent. Try to find consistent world descrip­
tions which are as similar as possible to this inconsistent description and which contain 
p. If q holds in all of them, then p > q is true, else it is false. 

It often happens that a true counterfactual becomes invalid when additional infor­
mation is obtained. 'If the electricity hadn't failed, dinner would have been ready on 
time', for instance, becomes false when we get the additional information that Peter 
forgot to go shopping. 

I shall not give a precise formal account of these intuitive ideas here, especially of 
the notion of similarity. The reader is referred to (Ginsberg 87) for a discussion of 
various formalizations and an investigation of computational aspects of counterfactual 
reasoning. 

In this section we have tried to isolate different types of reasoning. In real life they 
very often appear in combination. For instance, it may be the case that we believe that 
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