
CHAPTER 1

Introduction

The 2007 Nobel Prize in economics honored a subject, mechanism design,
fundamental to the study of incentives and information. Its importance is dif-
ficult to convey in a sound bite because it does not arise from a to-do list or
a ten-point plan. Rather, it is an analytical framework for thinking clearly and
carefully about the most fundamental of social problems: What exactly can a
given institution achieve when the information necessary to make decisions is
dispersed and privately held? The range of questions to which the approach
can be applied is striking. To achieve a given reduction in carbon emissions,
should one rely on taxes or a cap-and-trade system? Is it better to sell an Initial
Public Offering (IPO) via auction or the traditional book-building approach?
Would juries produce more informed decisions under a unanimity rule or that
of simple majority? Mechanism design helps us understand how the answers
to these questions depend on the details of the underlying environment. In turn,
this helps us understand which details matter and which do not.

To get a sense of what mechanism design is, we begin with a fable, first
told by the Nobelist, Ronald Coase. It involves, as all good fables do, a coal-
burning locomotive and a farmer. The locomotive emits sparks that set fire to
the farmer’s crops. Suppose that running the locomotive yields $1,000 worth
of profit for the railroad but causes $2,000 worth of crop damage. Should the
railroad be made to pay for the damage it causes?

The sparks alone do no damage. One might say the farmer caused the damage
by placing crops next to the railway line. It is the juxtaposition of sparks and
crops that lead to the $2,000 worth of damage. Perhaps, then, the farmer is
liable?

If you think this strange, suppose it costs the farmer $100 to ensure the
safety of the crop. If we make the railroad liable for damage to the crop, what
happens? The locomotive stops running.1 Why spend $2,000 to get a return of
$1,000? The farmer takes no precautions to secure the crop. As a society, we
are out $1,000 – the profit the railroad would have made had it continued to run
the locomotive. Now suppose we make the farmer liable. The locomotive runs.

1 Assuming the absence of technology that would eliminate the sparks.
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2 Introduction

The farmer pays $100 to safeguard the crop rather than $2,000 in crop damage.
On the balance, society is out only $100. If we cared about avoiding damage
in the most cost-effective way possible, we should make the farmer liable.

Suppose now the railroad had access to technology that would eliminate the
sparks for a price of $50. In this case, because it is cheaper for the railroad to
avoid the damage, it should be made liable. If cost effectiveness is our lodestar,
it puts us in a pickle, because the assignment of liability depends on the details
of the particular situation. Coase’s essential insight is that it does not matter
how liability is assigned as long as the parties are permitted to trade the liability
among themselves.

Suppose the railroad is made liable. What matters is whether or not the
railroad can pay the farmer to shoulder the liability. Assume, as before, that the
railroad cannot reduce the sparks emitted without shutting down the locomotive,
and that the farmer can avoid the crop damage at a cost of $100. Observe that the
railroad is better off paying the farmer at least $100 (and no more than $1,000)
to move the crops. The farmer will also be better off. In effect, the railroad pays
the farmer to assume the liability – seemingly a win-win arrangement. Thus, as
long as we allow the parties concerned to trade their liabilities, the party with
the least cost for avoiding the damage will shoulder the liability. In terms of
economic efficiency, it does not matter who is liable for what. It matters only
that the liabilities be clearly defined, easily tradeable, and enforced. It is true
that the farmer and railroad care a great deal about who is held liable for what. If
it is the railroad, then it must pay the farmer. If it is the farmer, the railroad pays
nothing. One may prefer, for reasons quite separate from economic efficiency,
to hold one party liable rather than the other. However, the outcome in terms
of who does what remains the same.

Coase recognizes there are transaction costs associated with bargaining over
the transfer of liabilities. Because they might overwhelm the gains to be had
from bargaining, it is of fundamental importance that such costs be minimized.
Nevertheless, mutually beneficial bargains fail to be struck even when trans-
action costs are nonexistent. Personality, ego, and history conspire to prevent
agreement. These are unsatisfying explanations for why mutually beneficial
agreements are unmade because they are idiosyncratic and situation specific.
Mechanism design suggests another reason: The actual cost incurred by each
party to avoid the damage is private information known only to themselves.

To see why, suppose the railroad incurs a cost $R of avoiding the damage
whereas the farmer incurs a cost of $F to do the same. Only the railroad knows
$R and only the farmer knows $F. If $F > $R, economic efficiency dictates
that the railroad should incur the cost of avoiding the damage. If $F < $R,
efficiency requires the farmer to shoulder the cost of avoiding the damage. In
the event that $F = $R, we are indifferent as to which one incurs the cost.

Now, let us – quite arbitrarily – make the railroad liable for the damage
and trust that bargaining between railroad and farmer will result in the person
with the lower cost of avoiding the damage undertaking the burden to avoid the
damage. If $R > $F, the railroad should pay the farmer to take on the liability.
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Introduction 3

Furthermore, it would want to pay as little as possible – ideally no more than
$F. However, the railroad does not know the magnitude of F. So, how much
should it offer? The lower the offer, the less likely it will be accepted. On the
other hand, if accepted, the more profitable it is to the railroad. On the flip
side, the farmer has every incentive to bluff the railroad into thinking that $F
is larger than it actually is so as to make a tidy profit. If the farmer is too
aggressive in this regard, the railroad may walk away thinking that $R < $F.
One can conceive of a variety of bargaining procedures that might mitigate
these difficulties. Is there a bargaining protocol that will lead inexorably to the
party with the lower cost of avoiding the damage assuming the liability?

Mechanism design approaches this question using the tools of game theory.
Any such protocol can be modeled as a game that encourages each party to
truthfully reveal its cost of avoiding the damage so that the correct assignment
of liability can be made. The encouragement to truthfully reveal this private
information is obtained with money. The monetary rewards must be generated
internally, that is, there is no rich uncle waiting on the sidelines to come to
the aid of either the farmer or the railroad. Thus, the question becomes a
purely mathematical one: Is there a game with these properties? Myerson and
Satterthwaite (1983) proved that the answer to this question was a resounding,
de Gaulle – like, “NON.” There is no bargaining protocol or trusted mediator
that is guaranteed in all circumstances to ensure that the party with the lower
cost of avoiding the damage assumes the liability. Hence, there is always the
possibility that no bargain will be struck even when it is in the mutual interest
of both parties to come to terms.

Thus, Coase’s original observation that the assignment of liability is irrel-
evant because an incorrect assignment would be corrected by bargaining in
the marketplace (provided transaction costs are small) is rendered false in the
presence of private information. Mechanism design also suggests how liability
should be assigned. Specifically, to ensure that the liability is assigned to the
party with the lowest cost for avoiding the damage, the right to avoid the
liability should be auctioned off to the highest bidder. How is this possible?
Suppose our auction works as follows. We have a price clock initially set at
zero. We then raise the price. At each price, we ask the bidders (railroad and
farmer) whether they wish to buy the right to avoid liability at the current price.
If both say “yes,” continue raising the price. The instant one of them drops
out, stop and sell the right to the remaining active bidder at the terminal price.
Observe that the farmer will stay active as long as the current price is below
$F. The railroad will stay active as long as the current price is below $R. If
the farmer drops out first, it must be because $F < $R. In this case, the farmer
assumes liability and the railroad pays the auctioneer $F. In short, the farmer,
who had the lower cost of avoiding the damage, is saddled with the liability. If
$R < $F, the reverse happens.

The fable of the railroad and the farmer involved the allocation of liability.
It could just as well have involved the allocation of a property right. One is
the obverse of the other. Now, the punchline. When governments create new
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4 Introduction

property rights or asset classes, these should be auctioned off to ensure they are
allocated in an economically efficient manner. It is exactly this reasoning that
supports the allocation of spectrum rights by auction. It is exactly this reasoning
that supports the allocation of permits to pollute by auction. It is exactly this
reasoning that will eventually propel the Federal Aviation Authority (FAA)
to use auctions to allocate arrival and departure slots at airports. Keynes said
it best: “I am sure that the power of vested interests is vastly exaggerated
compared with the gradual encroachment of ideas.”

It is not my ambition to provide a complete account of mechanism design
and its implications. My goal is more modest. It is to provide a systematic
account of the underlying mathematics of the subject. The novelty lies in the
approach. The emphasis is on the use of linear programming as a tool for
tackling the problems of mechanism design. This is at variance with custom
and practice, which have relied on calculus and the methods of analysis.2 There
are three advantages of such an approach:

1. Simplicity. Arguments based on linear programming are both elemen-
tary and transparent.

2. Unity. The machinery of linear programming provides a way to unify
results from disparate areas of mechanism design.

3. Reach. It provides the ability to solve problems that appear to be
beyond the reach of traditional methods.

No claim is made that the approach advocated here should supplant the tra-
ditional mathematical machinery. Rather, it is an addition to the quiver of the
economic theorist who purposes to understand economic phenomena through
the lens of mechanism design.

It is assumed the reader has some familiarity with game theory, the basics
of linear programming, and some convex analysis. This is no more than what
is expected of a first-year student in a graduate economics program. No prior
knowledge of mechanism design is assumed. However, the treatment offered
here will be plain and unadorned. To quote Cassel, it lacks “the corrobora-
tive detail, intended to give artistic verisimilitude to an otherwise bald and
unconvincing narrative.”

The point of view that animates this monograph is the product of collabo-
rations with many individuals, including Sushil Bikhchandani, Sven de Vries,
Alexey Malakhov, Rudolf Müller, Mallesh Pai, Teo Chung Piaw, Jay Sethu-
raman, and James Schummer. However, they are not responsible for errors of
commission or omission on my part.

It was William Thomson who first suggested that I put all this down on paper.
The spur was an invitation from Luca Rigotti, Pino Lopomo, and Sasa Pekec
to talk about these matters at Duke University’s Fuqua School. My thanks
to Daniele Condorelli, Antoine Loeper, Rudolf Müller, and John Weymark,

2 My colleagues refer to this as the pre-Newtonian approach to mechanism design.
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1.1 Outline 5

who provided comments on an earlier version. George Mailath and anonymous
reviewers provided invaluable suggestions on focus and intuition. An invita-
tion from Benny Moldovanu to spend time at the Hausdorff Institute during
its program on mechanism design provided valuable time to complete this
project. Michael Sara was very helpful in preparing the figures. My particular
thanks to Simone Galperti and Gabriel Carroll, who helped ferret out numerous
blushworthy mistakes.

1.1 OUTLINE

Here is a brief outline of the other chapters.

Chapter 2

This chapter is devoted to classical social choice. There are two main results.
The first is a linear inequality description of all social welfare functions that sat-
isfy Arrows conditions. These inequalities are then employed to derive Arrow’s
celebrated Impossibility Theorem. The same inequalities can be employed to
derive other results about social welfare functions.

The second result is a proof of the Gibbard-Satterthwaite Impossibility
Theorem. A number of authors have commented on the similarities between
Arrow’s Theorem and the Gibbard-Satterthwaite Theorem. Reny (2001), for
example, provides a unified proof of the two results. In this chapter, it is shown
that the social-choice functions of the Gibbard-Satterthwaite Theorem must
satisfy the same inequalities as the social welfare functions of Arrow’s Theorem.
Thus, impossibility in one translates immediately into impossibility in the other.
This is one illustration of the unifying power of linear programming – based
arguments.

The chapter closes with the revelation principle of mechanism design. Read-
ers with prior exposure to mechanism design can skip this portion of the chapter
without loss.

Chapter 3

As noted in Chapter 2, attention in the remainder of this monograph is directed to
the case when utilities are quasilinear. The incentive-compatibility constraints
in this case turn out to be dual to the problem of finding a shortest-path in a
suitable network. This chapter introduces basic properties of the problem of
finding a shortest path in a network. In fact, a problem that is more general
is considered: minimum cost network flow. The analysis of this problem is
not much more elaborate than needed for the shortest-path problem. Because
the minimum cost flow problem arises in other economic settings, the extra
generality is worth it.
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6 Introduction

Chapter 4

This chapter applies the machinery of Chapter 3 to provide a characterization
of allocation rules that can be implemented in dominant as well as Bayesian
incentive-compatible strategies. In addition, a general form of the Revenue
Equivalence Theorem is obtained.

Chapter 5

The focus in this chapter is on mechanisms that implement the efficient out-
come. The celebrated Vickrey-Clarke-Groves mechanism is derived using the
results from Chapter 4. Particular attention is devoted to indirect implemen-
tations of the Vickrey-Clarke-Groves scheme in the context of combinatorial
auctions. Such indirect mechanisms have an interpretation as primal-dual algo-
rithms for an appropriate linear programming problem.

Chapter 6

This chapter applies the machinery of linear programming to the problem of
optimal mechanism design. Not only are some of the classical results dupli-
cated, but some new results are obtained, illustrating the usefulness of the
approach.

Chapter 7

The subject of this brief chapter has no apparent connection to mechanism
design, but it is relevant. It considers an inverse question: Given observed
choices from a menu, what can we infer about preferences? Interestingly, the
same mathematical structure inherent in the study of incentives appears here.
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CHAPTER 2

Arrow’s Theorem and Its Consequences

By custom and tradition, accounts of mechanism design begin with a genu-
flection in the direction of Kenneth Arrow and his (im)possibility theorem.1

The biblical Mas-Collel, Whinston, and Green (1995), for example, introduce
mechanism design by reminding the reader of Arrow’s theorem, introduced
some chapters earlier. Weight of history aside, there is no logical reason for
this. Not disposed to being bolshy, I bow to precedent and begin with an account
of Arrow’s theorem. Whereas the conceptual connection to mechanism design
is tenuous, the mathematical connection, as the linear programming approach
reveals, is remarkably close.2

The environment considered involves a set � of alternatives (at least three).
Let � denote the set of all strict preference orderings, that is, permutations
over �.3 The set of admissible preference orderings or preference domain
for a society of n-agents will be a subset of � and denoted �. Let �n be the
set of all n-tuples of preferences from �, called profiles.4 An element of �n

will typically be denoted as P = (p1, p2, . . . , pn), where pi is interpreted as the
preference ordering of agent i.

The objective is to identify for each profile P a strict preference ordering that
will summarize it – a “median” or “mean” preference ordering, if you will.5

The rule for summarizing a profile is called a social welfare function. Formally,
an n-person social welfare function is a function f : �n �→ �. Thus for any
P ∈ �n, f (P) is an ordering of the alternatives. We write xf (P)y if x is ranked
above y under f (P).

There are many social welfare functions that one could imagine. One could
list each one and examine its properties. To avoid this botanical exercise, Arrow
suggested conditions that a social welfare function should satisfy to make it an
attractive way to summarize a profile. An n-person Arrovian social welfare

1 Arrow called it a ‘possibility’ theorem. His intellectual heirs added the ‘im’.
2 The treatment given here is based on Sethuraman, Teo, and Vohra (2003).
3 The results extend easily to the case of indifference. See Sato (2006).
4 This is sometimes called the common preference domain.
5 This is not the usual motivation for the construct to be introduced, but will do for our purposes.
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8 Arrow’s Theorem and Its Consequences

function (ASWF) on � is a function f : �n �→ � that satisfies the following
two conditions:

(1) Unanimity: If for P ∈ �n and some x, y ∈ � we have xpiy for all i,
then xf (P)y.

(2) Independence of Irrelevant Alternatives: For any x, y ∈ �, sup-
pose ∃P, Q ∈ �n, such that xpiy if and only if xqiy for i = 1, . . . , n.
Then xf (P)y if and only if xf (Q)y.

The first axiom is uncontroversial. It stipulates that if all agents prefer
alternative x to alternative y, then the social welfare function f must rank x

above y. The second axiom states that the ranking of x and y by f is not
affected by how the agents rank the other alternatives. This is not a benign
axiom. Much bile and ink had been spent debating its merits. The reader
interested in philosophical diversions on this matter can refer to Saari (2003).

A social welfare function that satisfies the two conditions is the dictatorial
rule: rank the alternatives in the order of the preferences of a particular agent
(the dictator). Formally, an ASWF is dictatorial if there is an i such that
f (P) = pi for all P ∈ �n. Clearly, the dictatorial rule is far from ideal as a rule
for summarizing a profile.

An ordered pair x, y ∈ � is called trivial if xpy for all p ∈ �. In view
of unanimity, any ASWF must have xf (P)y for all P ∈ �n whenever x, y is
a trivial pair. If � consists only of trivial pairs, then distinguishing between
dictatorial and nondictatorial ASWF’s becomes nonsensical, so we assume that
� contains at least one nontrivial pair. The domain � is Arrovian if it admits
a nondictatorial ASWF.

The goal is to derive an integer linear programming formulation of the
problem of finding an n-person ASWF. For each �, a set of linear inequalities
is identified with the property that every feasible 0-1 solution corresponds
to an n-person ASWF.6 By examining the inequalities, we should be able to
determine whether a given domain � is Arrovian.

2.1 THE INTEGER PROGRAM

Denote the set of all ordered pairs of alternatives by �2. Let E denote the set
of all agents, and Sc denote E \ S for all S ⊆ E.

To construct an n-person ASWF, we exploit the independence of irrelevant
alternatives, condition. The condition allows one to specify an ASWF in terms
of which ordered pair of alternatives a particular subset, S, of agents is decisive
over. A subset S of agents is decisive for x over y with respect to the ASWF
f , if whenever all agents in S rank x over y and all agents in Sc rank y over x,
the ASWF f ranks x over y.7

6 The formulation is an extension of the decomposability conditions identified by Kalai and Muller
(1977).

7 In the literature, this is called weakly decisive.
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2.1 The Integer Program 9

For each nontrivial element (x, y) ∈ �2, we define a 0-1 variable as follows:

dS(x, y) =
{

1, if the subset S of agents is decisive for x over y;
0, otherwise.

If (x, y) ∈ �2 is a trivial pair, then by default we set dS(x, y) = 1 for all S �= ∅.8

To each ASWF f , we can associate d variables that can be determined
as follows: for each S ⊆ E, and each nontrivial pair (x, y), pick a P ∈ �n in
which agents in S rank x over y, and agents in Sc rank y over x; if xf (P)y, set
dS(x, y) = 1, else set dS(x, y) = 0.

The remainder of this section identifies conditions satisfied by the d variables
associated with an ASWF f .

Unanimity: To ensure unanimity, for all (x, y) ∈ �2, we must have

dE(x, y) = 1. (2.1)

Independence of Irrelevant Alternatives: Consider a pair of alternatives
(x, y) ∈ �2, a P ∈ �n, and let S be the set of agents that prefer x to y in
P. (Thus, each agent in Sc prefers y to x in P.) Suppose xf (P)y. Let Q be any
other profile such that all agents in S rank x over y and all agents in Sc rank
y over x. By the independence of irrelevant alternatives, condition xf (Q)y.
Hence, the set S is decisive for x over y. However, if yf (P)x, a similar argu-
ment would imply that Sc is decisive for y over x. Thus, for all S and nontrivial
(x, y) ∈ �2, we must have

dS(x, y) + dSc (y, x) = 1. (2.2)

A consequence of equations (2.1) and (2.2) is that d∅(x, y) = 0 for all
(x, y) ∈ �2.

Transitivity: To motivate the next class of constraints, consider majority rule.
Suppose the number of agents is odd. Majority rule ranks alternative x above
alternative y if a strict majority of the agents prefer x to y. Thus, majority rule
can be described using the following variables:

dS(x, y) =
{

1, if |S| > n/2,

0, otherwise.

These variables satisfy equations (2.1) and (2.2). However, if � admits a
Condorcet triple (e.g., p1, p2, p3 ∈ � with xp1yp1z, yp2zp2x, and zp3xp3y),
then such a rule does not always return an element of � for each preference
profile. The reader can verify that applying majority rule to a three-agent

8 To accommodate indifferences in preferences as well as the social ordering, Sato (2006) pro-
poses a modification of the decision variables. For each S ⊆ E of agents and each (x, y) ∈ �2,
dS (x, y) = 1 is interpreted to mean that in any profile where all agents in S prefer x to y or are
indifferent between them and all agents in E \ S prefer y to x or are indifferent between them,
then x is, socially, at least as preferred as y.
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10 Arrow’s Theorem and Its Consequences
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Figure 2.1 The sets and the associated orderings.

profile corresponding to a Condorcet triple does not return an ordering. The
next constraint (cycle elimination) excludes this and similar possibilities.

For each triple x, y, z and partition of the agents in up to six sets, A, B, C,
U , V , and W ,

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (2.3)

where the sets satisfy the following conditions (hereafter referred to as condi-
tions [*]):

A �= ∅ only if there exists p ∈ �, xpzpy,

B �= ∅ only if there exists p ∈ �, ypxpz,

C �= ∅ only if there exists p ∈ �, zpypx,

U �= ∅ only if there exists p ∈ �, xpypz,

V �= ∅ only if there exists p ∈ �, zpxpy,

W �= ∅ only if there exists p ∈ �, ypzpx.

The constraint ensures that on any profile P ∈ �n, the ASWF f does not
produce a ranking that “cycles.”

Subsequently we prove that constraints (2.1–2.3) are both necessary and
sufficient for the characterization of n-person ASWF’s. Before that, it will
be instructive to develop a better understanding of constraints (2.3), and their
relationship to the constraints identified in Kalai and Muller (1977), called
decisiveness implications, described later in the chapter.

Suppose there are p, q ∈ � and three alternatives x, y and z such that xpypz

and yqzqx. Then,

dS(x, y) = 1 ⇒ dS(x, z) = 1,

and

dS(z, x) = 1 ⇒ dS(y, x) = 1.

The first implication follows from using a profile P in which agents in S rank
x over y over z and agents in Sc rank y over z over x. If S is decisive for x
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