
CHAPTER 1 

The Helmholtz Equation 

1.0 Introduction 

The main ideas relating the symmetry group of a linear partial differen
tial equation and the coordinate systems in which the equation admits 
separable solutions are most easily understood through examples. Perhaps 
the simplest nontrivial example that exhibits the features we wish to 
illustrate is the Helmholtz, or reduced wave, equation 

(A2 + co2)*(;c,.y)=0 (0.1) 

where co is a positive real constant and 

(Here dxx^ is the second partial derivative of SP" with respect to x.) 
In this chapter we will study the symmetry group and separated solu

tions of (0.1) and related equations in great detail, thereby laying the 
groundwork for similar treatments of much more complicated problems in 
the chapters to follow. 

For the present we consider only those solutions SP of (0.1) which are 
defined and analytic in the real variables x9y for some common open 
connected set D̂ in the plane R2. (For example, D̂ can be chosen as the 
plane itself.) The set of all such solutions >P forms a (complex) vector space 
%; that is, if *£% and a E ^ , then {a^){x,y) = a^{x,y)^%9 and 
(tyl+y2)(x,y) = <}'l(x,y) + yi'2(x,y)G% whenever tyl9ty2E%. Considering 
D̂ as fixed throughout our discussion, we call % the solution space of (0.1). 

Let § be the vector space of all complex-valued functions defined and 
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2 The Helmholtz Equation 1.1. 

real analytic on D̂ and let Q be the partial differential operator 

£ = A2 + <o2 (0.2) 

defined on 6D. Clearly, Q&G^ for $ e f , and % is that subspace of ^ 
which is the kernel or null space of the linear operator Q. 

1.1 The Symmetry Group of the Helmholtz Equation 

It is a well-known fact that if ^(x), x = (x,y), is a solution of (0.1), then 
^A(x) = ^(x + a) where a = (al,a2) is a real two-vector and ^ A A (x ) = 
^(xO) where 

o{g) = (cos0 - s i n 0 \ O<0<27r , 
V smfl cos# / 

are also solutions. (However, x must be chosen so that x + a and xO lie in 
^ in order for ^ and ^ A A to make sense when evaluated at x.) Thus 
translations in the plane and rotations about the origin map solutions of 
(0.1) into solutions. These translations and rotations generate the group 
£(2), the Euclidean group, whose elements are just the rigid motions in the 
plane. As we shall show, exploitation of this Euclidean symmetry of (0.1) 
yields simple proofs of many facts concerning the solutions of the Helm
holtz equation. In the following paragraphs we rederive the existence of 
Euclidean symmetry for (0.1) and show that in a certain sense E(2) is the 
maximal symmetry group of this equation. 

We say that the linear differential operator 

L = X(x)dx+Y(x)dy + Z(x)9 X,Y,ZB^ (1.1) 

is a symmetry operator for the Helmholtz equation provided 

[L,e] = /*(x)e, *e?F, (1.2) 

where [L,Q] = LQ— QL is the commutator of L and Q, and the analytic 
function R= RL may vary with L. Recall that Q is the operator (0.2). (We 
interpret the relation (1.2) to mean that the operators on the left- and 
right-hand sides yield the same result when applied to any 0 E ?F.) 

Let § be the set of all symmetry operators for the Helmholtz equation. £ 
o 

THEOREM 1.1. A symmetry operator L maps solutions of (0.1) into solu- 2 
tions; that is, if^G%, then L^E%. 5 

_ 6 
Proof. If ^ E S Q , we have ^EVt and Q* = 0. Then from (1.2), QL^= £ 

LQ*-RQ* = 0, s o L ^ E ^ . • S3 
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1.1. The Symmetry Group of the Helmholtz Equation 3 

Furthermore, it is not difficult to show that if an operator L of the form 
(1.1) maps solutions ^ of Q^ = 0 into solutions, then L satisfies the 
commutation relation (1.2) for some RG^. (However, it is not known 
whether this statement is true for an arbitrary linear differential equation 
of second order.) 

THEOREM 1.2. The set § of symmetry operators is a complex Lie algebra; 
that is, if L{,L2G§, then 

(1) alLl + a2L2G§ for all a „ a 2 E ^ , 

(2) [LVL2]G6. 

Proof. Since LUL2B§, these operators satisfy the equations [LpQ] — 
Rj(x)Q where i ^ E ^ , y = 1,2. A simple computation shows that the first-
order operator L = alLl + a2L2 satisfies (1.2) with R = axRx + a2R2. Simi
larly, L = [L,,L2] is a first-order operator that satisfies (1.2) with R = L}R2 

-L2RX where L = L + Z(x), (1.1). • 

Note: It is not excluded that § is an infinite-dimensional Lie algebra, 
although for the example considered here dim § = 4. 

We now explicitly compute the symmetry algebra of (0.1). Substituting 
(0.2) and (1.1) into (1.2) and evaluating the commutator, we find 

2XX dxx + 2(Xy+Yx) dxy + 2 Yy dyy + (Xxx + Xyy+2Zx)dx 

+ (Yxx+Yyy + 2Zy)dy + (Zxx + Zyy)=-R{dxx + dyy + co2). 

For this operator equation to be valid when applied to an arbitrary O G ? , 
it is necessary and sufficient that the coefficients of dxx, dyy, and so on be 
the same on both sides of the equation: 

(a) 2Xx=-R = 2Yy, Xy+Yx = 09 

(b) Xxx + Xyy + 2ZX = 0, Yxx+Yyy + 2Zy=0, (1.4) 

(c) Zxx + Zyy=-Ru2. 

From equations (1.4a), Xx= Yy and Xy=- Yx. Thus Xxx + X,..= Yxy- Yxy 

= 0; similarly, Yxx+ Yyy=0. Comparing these results with equation (1.4b), 
"? we see that Zx = Zy = 6, so Z = 8, a constant. It follows from (1.4c) that 
| R = 0. Equations (1.4a) then imply X = X(y), Y=Y(x) with X'(y) = 
2 ~ Y'(x)- This last equation implies X= — Y' = yGf?. Thus, the general 
^ solution of equations (1.4) is 

Z 
§ Ar=a + yy, Y=/3-yx, Z=89 R=0, (1.5) 
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4 The Helmholtz Equation 1.1. 

and the symmetry operator L takes the form 

L = {a + yy)dx + {p-yx)dy + 8. (1.6) 

Clearly the symmetry algebra § is four dimensional with basis 

P{ = dx, P2=dy, M=ydx-xdy, E=l, (1.7) 

obtained by setting a = l , fi=y=8=0 for Px; fi=\ and a = y = 5 = 0 for 
P2; and so on. The commutation relations for this basis are easily verified 
to be 

[Pl,P2]=0, [M,P,] = P2, [M,P2] = -P, (1.8) 

and [E,L] = 0 for all L e g . The symmetry operator E is of no interest to 
us, so we will ignore it and concentrate on the three-dimensional Lie 
algebra with basis {PVP2,M} and commutation relations (1.8). Further
more, for reasons that will become clear shortly we will restrict our 
attention to the real Lie algebra S(2) generated by {PVP2,M}, that is, the 
Lie algebra consisting of all elements aPx + fiP2 + yM where a, /?, y belong 
to the field of real numbers R. Here, S(2) is isomorphic to the Lie algebra 
of the Euclidean group in the plane E(2). To show this we consider the 
well-known realization of E(2) as a group of 3 x 3 matrices. The elements 
of E(2) are 

g(0,a,b) = 
cos# — sin0 0 
sin# cos0 0 

a b 1 

a.bGR, 
O<0<277(mod277), (1.9) 

and the group product is given by matrix multiplication, 

g(9,a,b) g(0\a',b') = g(0 + 0\acos0' + bsin9' 

+ tf',-asin0' + Z>cos0' + Z/). (1.10) 

E(2) acts as a transformation group in the plane. Indeed, the group 
element g(0,a,b) maps the point x = (x,y) in R2 to the point 

xg = (x cos 0 +y sin 0 + a, — x sin 0 +y cos 0 + b). (LID 

It is easy to check that x(g1g2) = (xg1)g2 for all xGR2 and gvg2GE(2) 
and that xg(0,0,0) = x where g (0,0,0) is the identity element of E(2). 
Geometrically, g corresponds to a rotation about the origin (0,0) through 
the angle 0 in a clockwise direction, followed by the translation (a, b). 

Computing the Lie algebra of the matrix group E(2) in the usual way So 

o 
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1.1. The Symmetry Group of the Helmholtz Equation 5 

(see Appendix A), we find that a basis for the Lie algebra is given by the 
matrices 

o 
6 
Z 

M = 
0 
1 
0 

- 1 0 
0 0 
0 0 

. Px = 
0 0 
0 0 
1 0 

0 
0 
0 

. P2 = 

0 0 
0 0 
0 1 

0 
0 
0 

(1.12) 

with commutation relations identical to (1.8). (Here, the commutator [A,B] 
of two nXn matrices is the matrix commutator [A,B] = AB — BA.) It 
follows that the symmetry algebra £ (2) is isomorphic to the Lie algebra of 
E(2). 

We can construct a general group element (1.9) from the Lie algebra 
elements (1.12) through use of the matrix exponential. Indeed, it is 
straightforward to show that 

where 

g(0,a, b) = exp(0M )exp(aPx4- bP2) 

exp(^)= 2 (k\)'lAk
9 A°=En, 

A: = 0 

(1.13) 

(1.14) 

for any n X n matrix A. Here En is the n X n identity matrix. 
Using standard results from Lie theory (see Appendix A), we can extend 

the action of S(2) on 5" given by expressions (1.7) to a local representation 
T of E{2) on S\ Indeed from Theorem A.3 we obtain the operators T(g) 
where 

T( g(0,a,0))<D(x) = QxpiaP, )9(x) = <*>(* + a,y), 

T(g(0,0,6))*(x) = exp(6P2)*(x) = $(jc,^ + 6), (1.15) 

T(g(0,O,O))$(x) = exp(dM)$(x) = *(xcos»+-vsinfl,-xsinfl+-ycosfl) 

and $ G f . In analogy with (1.13) the general operator T(g) is defined by 

T( g(6, a, b))$(x) = exp(0M )exp(«P1 )exp(*P2 )0>(x) 

= $(xg) (1.16) 

where xg is given by (1.11). Thus the action (1.11) of E(2) as a transforma
tion group is exactly that induced by the Lie derivatives (1.7). (Recall that 
if L is a Lie derivative, we have by definition 

exp(aL)$(x)= 2 ff£**(*)> ®^< 
k = 0 

(1.17) 

22 see (A.8).) 
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6 The Helmholtz Equation 1.1. 

It is a consequence of the fundamental results of Lie theory that the 
operators T(g) satisfy the group homomorphism property 

T(gg') = T(g)T(g% g,g'£E(2), (1.18) 

although the dubious reader can verify this directly. The results (1.16), 
(1.18) have to be interpreted with some care because for a pair xG6!), 
g £ £ ( 2 ) , the element xg may not lie in 6D, so that <£(xg) is undefined. 
However, for fixed xG6!) the element xg will lie in 6D as long as g is in a 
suitably small neighborhood of the identity element g(0,0,0) in E(2). Thus 
(1.16) and (1.18) have only local validity. 

If L is a first-order symmetry operator of the Helmholtz equation, that 
is, L maps solutions into solutions, then also Lk maps solutions into 
solutions for each k = 2,3,4,.... Furthermore, from (1.17) we see that the 
operator exp(aL) also maps solutions into solutions. Since the operators 
T( g) are composed of products of terms of the form exp(^L), L e g (2), we 
can conclude that if ^(x) is an analytic solution of Q<V = Q, then <&'(x) = 
T( g)^(x) = ^(xg) is also an analytic solution, with domain the open set 
consisting of all xG/? 2 such that xgG 6 ? . (If P̂ = R2, then the operators 
T( g) are defined globally and there is no domain problem.) Based on these 
comments, we call E(2) the symmetry group of the equation Q^ = 0. 

It is now easy to see why we limit ourselves to the real Lie algebra with 
basis PVP2,M. The exponential of an element of the complex Lie algebra, 
say iPx where i = V — 1 , is a symmetry of the Helmholtz equation. How
ever, a straightforward application of Lie theory yields exp(/7>

1)^>(x) = 0(x 
+ i,y) and this is undefined for $ G ?F because <£ is defined only for real x 
and y. Thus we limit ourselves to the Lie algebra whose elements have 
exponentials with the simple interpretation (1.16). 

In analogy to our computation of the first-order symmetry operators for 
the Helmholtz equation, we can determine the second-order symmetry 
operators. We say that the second-order operator 

S-A^d^ + A ^ + A^d^ + B^+B^+C, AJk,Bj,Ce$, (1.19) 

is a symmetry operator for (0.1) provided 

[S,Q]=U(x)Q (1.20) 

where 

U=Hl(x)dx + H2(x)dy + J(x), Hj,JG$, (1.21) 

O 

is a first-order differential operator. (Here U may vary with S.) We g 
consider a first-order symmetry operator L as a special second-order i 
symmetry. When S=L, equation (1.20) holds with Hx = H2 = 0. We allow £ 
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1.1. The Symmetry Group of the Helmholtz Equation 7 

U to be a first-order operator because the commutator of two second-order 
operators is an operator of order < 3. 

The following result is proved exactly as is Theorem 1.1. 

THEOREM 1.3. A second-order symmetry operator S maps solutions of (0.1) 
into solutions', that is, if^G%, then S^^%. 

Furthermore, it is not difficult to show that if an operator S of the form 
(1.19) maps solutions ^ of Q<k = 0 into solutions, then S satisfies the 
commutation relation (1.20) for some U of the form (1.21). 

Let S be the vector space of all second-order symmetry operators S. 
Clearly S contains the first-order symmetry algebra §. However, S is not 
a Lie algebra under the usual bracket operation because the commutator 
[S, S'] of two second-order symmetries is in general a third-order operator, 
hence not an element of S. (Note that [£,5"] still maps solutions into 
solutions.) 

Among the elements of § are all operators of the form RQ where R is 
any element of f. Indeed S=RQ satisfies (1.20) with U = [R,Q], a 
first-order differential operator. We can check directly that RQ maps 
solutions ^ of 2 ^ = 0 into other solutions. Indeed (RQ)^ = R(Q^) = 0, 
so ^ is mapped to the solution 0. It follows that the operators RQ are 
symmetries of a trivial sort; they act as the zero operator on the solution 
space %. 

The set of all trivial symmetries q = {RQ : R G^} forms a subspace of S 
and each element of q acts as the zero operator on ?F0. We will henceforth 
ignore q and concentrate our attention on the factor space S /q of 
nontrivial symmetries. Thus we will regard two symmetries S,S' in S as 
identical (S = S') if S'=S+RQ for some R G?F. If S is given by (1.19), 
then S = S' where S'= S-A22Q, so that the coefficient of 9^ in the 
expression for S' is zero. Thus every symmetry S is equivalent to a 
symmetry 5" whose coefficient of 9^ is zero. (Note that the operators S 
and S' agree on the solution space %.) Furthermore, two operators S{,S2 

whose coefficients of 3 are zero agree on % if and only if their remaining 
coefficients are identical. 

The computation of all nontrivial symmetries is straightforward. We 
substitute expressions (1.19) (with A22 = 0) and (1.21) into (1.20) and equate 
coefficients of the various partial derivatives with respect to x and y on 
both sides of the resulting relation. The equations obtained are analogous 
to (1.3) and (1.4) but somewhat more complicated. Here we present only 

g the results of the computation. 
S § /q is a nine-dimensional complex vector space with basis 

\ W P^'M'E- (1.22) 
8 (b) P;,P,P2,M

!,{M,P, },{M,P2). 
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8 The Helmholtz Equation 1.1. 

Here {A,B} = AB + BA for operators A,B on S\ Note that if A and B 
are first-order symmetries, then the products AB and BA are second-order 
symmetries. The results (1.22) show that the Helmholtz equation admits no 
nontrivial symmetries other than these; that is, all second-order symmetries 
are quadratic polynomials in the elements of %. (In fact, it can be shown 
that the nontrivial symmetry operators of any order are polynomials in the 
elements of §, but we shall not need this.) In general, if Q SI* = 0 is a 
second-order partial differential equation whose nontrivial second-order 
symmetries are all quadratic polynomials in the elements of the first-order 
symmetry algebra §, we call such an equation class I. If there exists a 
nontrivial second-order symmetry that is not expressible as a quadratic 
polynomial in the first-order symmetries, the equation is called class II. 
From (1.22) we conclude that the Helmholtz equation is class I. 

A few comments are in order concerning the symbol {•,-}. Consider the 
second-order symmetry MPV Note that 

MPX = \{MPX + PXM) + \{MPX - PXM) = \ { M,Px } + \ [ M,Px ] . 

Thus we have expressed MPX as the sum of the truly second-order 
(nonfirst-order) operator \{M,PX) and the first-order operator 
\[M,PX]= \P2. Similarly, any product AB of elements of S(2) can be 
written uniquely as the sum of a symmetrized purely second-order part 
\{A,B) and a commutator ^[v4,2?] that belongs to S(2). In (1.22a) we 
have listed a basis for the first-order operators in S /q, while in (1.22b) we 
have listed a basis for the subspace of purely second-order operators. 

For another perspective on the five-dimensional space spanned by the 
basis (1.22b), consider the space S(2)(2) of second-order symmetrized 
operators from S (2). This space is six-dimensional with a basis consisting 
of the five operators listed in (1.22b) plus the operator P\. However, on % 
the operator Pj2+P2

2eS(2) ( 2 ) agrees with the first-order operator -co2, 
that is, multiplication by the constant -co2. Thus to characterize those 
elements of S (2)(2) which act on % in distinct ways, we pass to the factor 
space S(2) ( 2 ) / (A 2 +^ 2

2 } , where {Pf+Pi} is the subspace of S(2)(2) 

consisting of all constant multiples a(Px + P^aER. This makes sense 
because two operators Sx, S2 in S(2)(2) such that Sx — S2=a(Px

2 + P%) have 
the same eigenfunctions in % with corresponding eigenvalues differing by 
aw2. 

Up to now we have considered S /q as the space of all complex linear £ 
combinations of the basis operators (1.22). However, for purposes of § 
describing the relationship between symmetry and separation of variables 7. 
for the real Helmholtz equation we shall find that it is sufficient to g 
consider only real linear combinations of the basis operators (1.22). Rather £ 
than introduce a new symbol to denote this real nine-dimensional vector g 
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1.2. Separation of Variables for the Helmholtz Equation 9 

space, we shall retain the symbol S /q but we shall henceforth consider 
this vector space to be defined over R rather than <£. 

With this interpretation we see that the five-dimensional subspace of 
purely second-order operators in S/q is isomorphic to S (2)(2)/{ P 2 + P2}. 
That is, we can identify the purely second-order symmetries of the Helm
holtz equation with the purely second-order elements in the universal 
enveloping algebra of S (2) modulo the center of the enveloping algebra. 
This point of view will be useful for the orbit analysis that we carry out in 
Section 1.2. 

1.2 Separation of Variables for the Helmholtz Equation 

The method of separation of variables for solving partial differential 
equations, although easy to illustrate for certain important examples, 
proves surprisingly subtle and difficult to describe in general. For this 
reason we begin with the simplest cases and then gradually consider cases 
of greater and greater complexity. At present we content ourselves with the 
vague assertion that separation of variables is a method for finding 
solutions of a second-order partial differential equation in n variables by 
reduction of this equation to a system of n (at most) second-order ordinary 
differential equations. 

Let us begin by searching for solutions of (0.1) in the form <k(x,y) = 
X(x)Y(y). Then the Helmholtz equation becomes 

X"Y+XY" + u2XY = 0 (2.1) 

where a prime denotes differentiation. This equation can be written 

^ = - ^ - " 2 (2.2) 

where the left-hand side is a function of x alone and the right-hand side is 
a function of y alone. (Thus the Cartesian coordinates JC, y have been 
separated in (2.2).) This is possible only if both sides of the equation are 
equal to a constant - A:2, called the separation constant. Thus equation (2.2) 
is equivalent to the pair of ordinary differential equations 

IT) 

| X"(x) + k2X{x) = 0, Y"(y) + (u2-k2)Y(y) = 0. (2.3) 

H A basis of solutions for the x equation is Xx = elkx, X2 = e~,kx for k^O, 
z while y,=exp(/(a>2- k2)l/2y), Y2 = exp(- i(co2- k2)l/2y) is a basis for the 
£ y equation if co2 - /c 2 ^0. Thus we can find solutions ty(x,y) of (0.1) in the 
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10 The Helmholtz Equation 1.2. 

form 

**(*)= 2 AjlXJ(x)Yl(y) (2.4) 
y \ / - i 

where the complex constants Ajt are arbitrary. Although the ^k are very 
special solutions of (0.1), it can be shown that essentially any solution of 
the Helmholtz equation can be represented as a sum or integral (with 
respect to k) of these special solutions. 

Note that the separated solution <&k = Xx Yx =exp{i[kx + (co2- k2)l/2y]} 
is a simultaneous eigenvector of the commuting operators F, = 9V and 

P^k = ik^k, P2*k = i(<o2-k2)1/2% (2.5) 

with similar remarks for the other separated solutions Xj Yr Thus, we can 
characterize the separated solutions in Cartesian coordinates by saying 
that they are common eigenfunctions of the symmetry operators P},P2E: 
S ( 2 ) i n % . 

For our next example we pass to polar coordinates r, 0: 

x = rcos0, y = rs'm0, 0 < A\ 0< 0<2TT (modlir). (2.6) 

In these coordinates the Helmholtz equation becomes 

(a„ +jar+^a«w)*(r,0)=o. (2.7) 

We look for solutions of the form * = R(r)&(9). Substituting this expres
sion into (2.7) and rearranging terms, we obtain 

(r2/{// + r/?/ + r 2 ( o 2 ) / ? - 1 = - 0 / ' e - 1 . (2.8) 

Since the left-hand side of (2.8) is a function of r alone, while the 
right-hand side is a function of 0 alone, both sides of this equation must be 
equal to a constant k2. Thus (2.8) is equivalent to the two ordinary 
differential equations 

Q"(6) + k2@(6) = 0, r2R"(r) + rR'(r) + (rW-k2)R=0. (2.9) ^ 
O 

The first equation has solutions ® = e±ike while the second, BessePs equa- ;r 
tion, admits the solutions R = J±k(cor) where Jv{z) is a Bessel function (see S 
equation (B.14)). Note that the separated solution <if

k = Jk(o^r)elk0 is an £ 
eigenvector of the operator M G S (2). Indeed, in polar coordinates M= S3 
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