Emphasising the creative aspect of music technology, this Introduction sets out an overview of the field for music students in a non-scientific and straightforward way. Engaging and user-friendly, the book covers studio concepts: basic audio and the studio workflow, including audio and MIDI recording. It explores synthesisers, samplers and drum machines as well as basic concepts for electronic performance. In considering the role of the DJ, the book addresses remixing and production, drawing upon many examples from the popular music repertoire as well as looking at the studio as an experimental laboratory. The creative workflow involved in music for media is discussed, as well as controllers for performance and the basics of hacking electronics for music. The Introduction as a whole reflects the many exciting areas found today in music technology, and aims to set aspiring musicians off on a journey of discovery in electronic music.

Julio D'Escriván is Reader in Creative Music Technology at Anglia Ruskin University, Cambridge.
Cambridge Introductions to Music

‘Cambridge University Press is to be congratulated for formulating the idea of an “Introductions to Music” series.’ Nicholas Jones, *The Musical Times*

Each book in this series focuses on a topic fundamental to the study of music at undergraduate and graduate level. The introductions will also appeal to readers who want to broaden their understanding of the music they enjoy.

- Contain textboxes which highlight and summarise key information
- Provide helpful guidance on specialised musical terminology
- Thorough guides to further reading assist the reader in investigating the topic in more depth

Books in the series

Gregorian Chant David Hiley
Music Technology Julio d'Escriván
Serialism Arnold Whittall
The Sonata Thomas Schmidt-Beste
The Song Cycle Laura Tunbridge
Cambridge Introductions to Music

Music Technology

JULIO D’ESCRIVÁN
‘I really know very little about the technology of these instruments . . . but I do know what their buttons do. I have a lot of analog instruments in my setup still, and I know if I turn this little button it gives me a little more brightness, for instance. So, when I sit down to play – which I do almost every day – the first thing I do is find me a sound. The moment I have a sound, I have some music.’

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xv</td>
</tr>
<tr>
<td>List of figures</td>
<td>xvi</td>
</tr>
<tr>
<td>Chapter 1 Representing and storing sound</td>
<td>1</td>
</tr>
<tr>
<td>Physics of sound: the audio signal</td>
<td>1</td>
</tr>
<tr>
<td>What is sound?</td>
<td>1</td>
</tr>
<tr>
<td>How do we measure sound?</td>
<td>3</td>
</tr>
<tr>
<td>The audio signal</td>
<td>7</td>
</tr>
<tr>
<td>Digital recording</td>
<td>9</td>
</tr>
<tr>
<td>Sound represented graphically</td>
<td>11</td>
</tr>
<tr>
<td>Representing sound amplitude</td>
<td>11</td>
</tr>
<tr>
<td>Representing sound frequency</td>
<td>13</td>
</tr>
<tr>
<td>Other representations</td>
<td>14</td>
</tr>
<tr>
<td>Actually perceiving sound</td>
<td>15</td>
</tr>
<tr>
<td>Sound as computer data</td>
<td>16</td>
</tr>
<tr>
<td>Formats for storing sound files</td>
<td>16</td>
</tr>
<tr>
<td>Standards for carrying digital audio</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 2 A studio overview</td>
<td>21</td>
</tr>
<tr>
<td>The mixer</td>
<td>22</td>
</tr>
<tr>
<td>Sections of the mixing desk</td>
<td>23</td>
</tr>
<tr>
<td>The mixer input section</td>
<td>26</td>
</tr>
<tr>
<td>The mixer channel strips</td>
<td>27</td>
</tr>
<tr>
<td>The mixer control section</td>
<td>31</td>
</tr>
<tr>
<td>The mixer output section</td>
<td>32</td>
</tr>
<tr>
<td>Audio signal paths</td>
<td>33</td>
</tr>
<tr>
<td>Tracking, mixing and mastering</td>
<td>34</td>
</tr>
<tr>
<td>Effects</td>
<td>34</td>
</tr>
<tr>
<td>Mixing</td>
<td>38</td>
</tr>
</tbody>
</table>
Contents

Mastering 39
Listening and editing environments 40
Noise, absorption and diffusion 40
Speaker choice, position and seating 41
Headphone editing and mixing 42
On choosing the right headphones 43
The headphone stereo image 44
Headphone frequency response 44
Sound recording 45
Polar diagrams: representing how a microphone ‘listens’ 48
Microphone placement 53
Enveloping the listener 56
MIDI and recording 61
Why and how did MIDI come about? 62
MIDI is not sound 63
MIDI is indifferent to timbre 64
and . . . MIDI has low resolution! 64
What does the MIDI protocol actually specify? 64
Channel voice messages 65
Working with MIDI control messages 66
Combining audio and MIDI 69

Chapter 3 Synthesisers, samplers and drum machines 72
Sound synthesis 72
Synthesis methods 72
Synth signal flow and modules 74
Sound generator modules 75
Filter modules 79
Control modules (envelopes) 80
Amplifier modules 82
Low Frequency Oscillators (LFOs) module 82
Routing modules (modulation) 83
Samplers 83
Original pitch and root key 84
Start, loop and end points 85
Zones or key-groups 85
Groups 85
Filters, envelopes, amplifiers and modulation matrixes 86
Warping and tempo syncing 86
Drum machines 86
Realistic or not? 88
Chapter 4 Live music technology (the FAQs)

What is sound reinforcement? 89
What is a PA? 89
What is sound diffusion or sound projection? 89
Is there a standard setup for a PA or for sound reinforcement? 91
How much sound reinforcement do I need? 91
Where should I setup my laptop on stage? 92
Which cables should I use? 92
How will my instruments be connected to the venue’s PA? 94
How many mixers/consoles do sound systems use? 94
How many monitors will I need to be able to hear myself on stage? 94
Can I connect my consumer sound card with phono connectors (RCA) or a 1/8″ mini-jack from my computer to the mixer? 95
What is the ideal way to output audio from my laptop? 95
What audio processing devices can I expect to find in a PA? 96
How do I setup for live mixing, capture and looping? 96
What sort of microphone is best for live performance? 96
What do I need to know about impedance and nominal levels and how do they affect my sound in live performance? 98
Can I connect my electric guitar into a microphone input if it accepts a 1/4″ plug? 100
What can I do when there are hums, buzzes, hiss or static crackle sounds that I do not actually intend as part of my music? 100

Chapter 5 Select, remix, mashup

The question of the Deejay 103
Digital DJing 105
Vinyl emulation setups 107
Controller setups 108
Sequencing environments 108
DJ-style workflow 111
Selecting music 111
Sampling 112
Developing a groove 113
Voice and structure 113
Performance considerations 115
Remix, mashup . . . 116
. . . intellectual property 117
Chapter 6 The producer

The role of the producer 120
Producer, songwriter, composer, performer? 121
The studio as composition and arrangement tool 121
Concept albums and creative collaboration 123
Post-production 124
The studio as performance tool 128

Chapter 7 Music, sound and visual media

Music technology in multimedia 130
Theorising on music and visuals 132
How much music theory do we need to know? 135
Workflow 137
Delivering the music 138
Surround and immersion 140
Applications 142
Market forces 142

Chapter 8 The studio as experimental lab

Sounds from scratch (literally, sound produced from scratching) 144
Early sound labs 145
Creativity in the studio 147
Accidents 147
Re-recording 148
Reversing 149
Gating 149
Sound effects 150
The BBC Radiophonic Workshop 151
Future studios? 152
The portable studio is a portable sound lab 153
Studio software: representing the studio on your computer 154
The graphic approach 155
MaxMSP/Jitter and PD 155
The text approach: coding 159
More tools you should know about 161

Chapter 9 Controllers: new creative possibilities in performance

New performance scenarios 162
Preface

It is difficult to know exactly when electronic music became part of university curricula, but it was probably as early as the 1960s, at least at graduate level. However, we can safely say that ‘music technology’ as a subject, or as the title of a course, is a fairly recent development. The term probably began to be used in the late 1990s and has only become a standard feature of the higher education on offer in the 2000s. There are a great number of music technology courses all over the world. In Great Britain alone there are, at the time of writing, around eighty-three higher education institutions that offer BA Honours degrees in some aspect of music technology: creative music technology, sound technology, music production, music and sonic arts, and many other variations. The subject is popular and encompasses a wide variety of topics, including sound synthesis, composition, sonic art, electronic music, music for media, computer music and many others.

The problem is, in a sense, how wide ranging the choices are. It is a problem for students, since under a similar heading they can expect very different courses from different institutions. It is a problem for universities, because there are many types of candidates with different but useful skill-sets that are suitable for the course (two of my best students did not have any music background, but had foundation studies in art and design).

But how is music technology different from audio technology? Audio technology only becomes music technology when it is applied to music-making. This sounds obvious to begin with, but it isn’t. From an old-school perspective, anyone who is ‘twirling the knobs’ or programming is a technician and not a musician. And, indeed, this is how it all began. The reality of it is that as technical facilities have become more accessible, musicians have become empowered. They no longer have to rely on a specialist to make the machines work, as was the case up to the early 1980s. MIDI and hard-disk recording have firmly put the musician in the driving seat. Technology is now also at the service of composing, arranging, writing and orchestrating music, as much as in the past it has been at the service of recording and synthesis. This is not to say that we don’t need audio technologists. Audio scientists are indispensable, as they calculate necessary stuff like more natural-sounding reverb, digital-signal processing plugins, new synthesis algorithms, software abstractions, and develop the
informatics of sound management and storage. Yet without a doubt, these pursuits remain firmly in the field of science, sometimes without enough contribution from artists looking to use and misuse the tools. Yet there is probably more science in everyday music-making than there ever was before. This signals a change in education curricula which is only happening gradually, so it is not uncommon to have first-year students balk at the idea of learning to code or calculate (or even be aware of) an acoustic measurement; they didn’t think they had signed up for that!

This book will help you explore current trends in music technology while introducing some key concepts and techniques: it aims to give you an overall view of the field. It probably isn’t deep enough or comprehensive enough so, beware, this is only the tip of the iceberg. There is a lot of follow-up work you need to do. Simply reading it is not enough. Try and verify the ideas presented here regarding microphones, production and mastering, for instance, in your own music-making. Think about the experimental possibilities of your studio, dream up weird and wonderful controllers, get ready to hack your younger siblings’ (or children’s) toys. Follow the threads of information provided by the references and you will discover a rich world of musical experience, much more than I can include in fewer than 75,000 words. It will enable you to embark on what could be a lifelong journey of creative interaction with technology for the sake of making beautiful sound.

I have organised the book into four areas. Broadly speaking, Chapters 1, 2 and 3 review the basics of sound and consider the process of recording and creativity in the studio. Chapters 4 and 5 are more focused on DJ and laptop performance issues. Chapters 6 and 7 are aimed at the working musician: it is probable your work as a professional in the near future may strongly involve production or making music for media. Chapters 8, 9 and 10 are dedicated to creative music technology, where we will look at The ‘X-Files’ of music technology: dreamt-up musical instruments coming to life; making musical sounds with unthinkable objects and generally pushing our gear to the limits for the elusive prize – a sound that will give us some music.
Acknowledgements

Although I am certain I will forget somebody, I will try to mention everyone I am in debt to. So . . . for making it happen, the editors, without whom I wouldn’t even have thought of writing this book: Vicki Cooper who had the idea of commissioning a title like this for the *Introductions* series, and Becky Taylor who, together with Vicki, gave me the support, encouragement and guidance I needed during the writing process. Also to my Production Editor Christina Sarigiannidou who helped me navigate the intricacy of the final stage with kindness and good humour. For generously supporting me through a sabbatical for most of the period of writing I am grateful to Anglia Ruskin University and in particular to my Head of Department Paul Jackson, whose friendship and collegiate spirit have helped me through this project. For kindly reviewing chapters for me: Nick Collins (the English one, the younger, who is always a mentor to me in these things); Justin ‘Dr Hip Hop’ Williams; film composer and fellow scholar, Miguel Mera; film composer Roger Jackson; *compadre* Gareth Stuart; and admired creative music programmer, Thor Magnusson. For being part of the Twitter and Facebook crowdsource that I bounced ideas back and forth with: fellow author Bob Gluck; fellow composer and SuperCollidererrer Jason Dixon; fellow composer Miguel Noya; my former students and friends Paul Jones, Jack Ashley, Natasha Roberts and Daniel Smith; and all those who poked me with their comments, likes and tweets as I shared my book-writing pains! And, for giving me helpful comments in class as I tried my explanations and graphics on them, my students of Laptop Musicianship at Anglia Ruskin University.

Finally, Milly, my wife and partner, who supports me unconditionally and my beautiful artistic daughters, Isabel, Mariela, Emilia and Ana Teresa. *Music Technology* is dedicated to them.
<table>
<thead>
<tr>
<th>Figures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 How sound propagates</td>
<td>page 2</td>
</tr>
<tr>
<td>1.2 Measuring a sound wave</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Analogue to digital</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Representing amplitude</td>
<td>11</td>
</tr>
<tr>
<td>1.5 FFT representation</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Equal loudness contours</td>
<td>15</td>
</tr>
<tr>
<td>2.1 An overview of the studio</td>
<td>22</td>
</tr>
<tr>
<td>2.2 NEVE 5088 Discrete Analogue Mixer (courtesy of Rupert Neve Designs (www.rupertneve.com) and Focusrite (www.focusrite.com))</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Basic mixer routes</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Routing to an auxiliary channel</td>
<td>26</td>
</tr>
<tr>
<td>2.5 Input channel strips (courtesy of Ableton AG, Schoenhauser Allee 6–7, 10119 Berlin, Germany)</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Block diagram for the Fireface 800 DSP Mixer (courtesy of RME Intelligent Audio Systems, www.audioag.com)</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Suggested overdubbing workflow</td>
<td>35</td>
</tr>
<tr>
<td>2.8 Microphone types</td>
<td>47</td>
</tr>
<tr>
<td>2.9 The microphone polar diagram</td>
<td>49</td>
</tr>
<tr>
<td>2.10 Omnidirectional mic response</td>
<td>50</td>
</tr>
<tr>
<td>2.11 Bidirectional mic response</td>
<td>51</td>
</tr>
<tr>
<td>2.12 Cardioid mic response</td>
<td>52</td>
</tr>
<tr>
<td>2.13 Sound bounces off every available surface and arrives at each ear with a slight time difference and timbre</td>
<td>53</td>
</tr>
<tr>
<td>2.14 A binaural dummy head</td>
<td>54</td>
</tr>
<tr>
<td>2.15 Common microphone configurations</td>
<td>56</td>
</tr>
<tr>
<td>2.16 Surround speaker placements</td>
<td>58</td>
</tr>
<tr>
<td>2.17 Surround systems overview</td>
<td>60</td>
</tr>
<tr>
<td>2.18 Various controller surfaces by permission of Novation (courtesy of Novation, www.novationmusic.com), Numark, Akai and Livid</td>
<td>68</td>
</tr>
<tr>
<td>2.19 Beat slicing</td>
<td>70</td>
</tr>
<tr>
<td>3.1 An example of a user-friendly interface idea in physical modelling</td>
<td>74</td>
</tr>
</tbody>
</table>
List of figures xvii

3.2 A general interconnection diagram for synth modules 76
3.3 A Minimoog-style oscillator bank 79
3.4 An ADSR envelope 81
3.5 A vintage drum machine grid 87
4.1 Word cloud of Chapter 4 90
4.2 Various types of connectors and plugs 93
4.3 A suggested live performance set-up 97
4.4 Impedance 98
5.1 A MIDI controller instrument 107
5.2 Finding transients 110
5.3 Key-groups 112
5.4 Wide key-group assignments 113
5.5 Digital DJ setup 115
8.1 A variety of Max objects 157
8.2 A typical Max 5 patch 158
9.1 Controllers and sound/media generators 164
9.2 Control mapping for performance 167
9.3 Tilt and swipe actions can control an instrument 168
10.1 The flow of electricity through a toy 180
10.2 Common electrical components 182

Every effort has been made to trace the copyright holders for all images used. In the event of any query please contact the publisher.