Integrated Science for CSEC®

Third edition

June Mitchelmore
Formerly Education Officer (Science)
Ministry of Education, Kingston, Jamaica

John Phillips
Formerly Science Teacher
Harrison College, Bridgetown, Barbados

John Steward
Formerly Science Adviser
Ministry of Education, Georgetown, Guyana
and Curriculum Consultant, Dominica
Preface

Integrated Science for CSEC® is the third edition of the previously named *CXC Integrated Science*. This third edition has been comprehensively updated in line with the revision of the Caribbean Examination Council’s *CSEC® Integrated Science* syllabus, examined for the first time in 2011.

The content and the design of the book will appeal to students who need simple presentation of the material, while also covering all the key information.

The book features:
- clear text, illustrations and photographs
- extensive coverage of the practical skills needed for School-based assessment (SBA), making the book also useful for private students
- coding of practicals throughout the book that identify the skills covered by each practical
- photocopiable worksheets for over 30 SBA practicals, from which teachers can select the ones they wish to use
- activities for discussion and research, interwoven into the text
- ‘Did you know?’ boxes, providing extra information and added interest
- a summary on each double-page spread that students complete in their Exercise books using key words
- numerous questions within the text.

Additional features of the book are summarized on the back cover.

The chapters are arranged in four sections:
- Introduction, which revises important topics studied in previous grades and covers the practical skills required for SBA
- A The organism and its environment
- B The home and workplace
- C Energy

At the back of the book, there is a section about School-based assessment, which contains tables summarizing skills used in science investigating and reporting, and worksheets to accompany selected SBA practicals chosen from throughout the syllabus. The Glossary and Index contains comprehensive descriptions of important terms.

The CD-ROM in the back of the book contains:
- animations that illustrate certain key concepts and present problem situations for students to solve
- sample questions in Integrated Science, including examination-style questions and free-response questions for discussion
- answers to all the ‘Key ideas’ from within the book, which together provide a summary of the whole course
- notes for teachers about setting up and marking SBA practicals.

Additional information for both students and teachers can be found at www.cambridge.org/education.

The authors would like to record their thanks for the feedback received from the adviser, Sue Cameron-Chambers.

June Mitchelmore
John Phillips
John Steward
Contents

Introduction

1. Matter, energy and living things
 1.1 What are living and non-living things? 6
 1.2 What are the units of measurement? 8
 1.3 How are living things built up? 10
 1.4 Who’s who among living things? 12
 1.5 What is energy? 16
 1.6 What is matter made of? 18
 1.7 How can matter change? 22
 1.8 Why is carbon so important? 24

2. Practical skills
 2.1 How do we study Integrated Science? 26
 2.2 How do we use information? 28
 2.3 How do we plan and design? 30
 2.4 How do we manipulate and measure? 32
 2.5 How do we draw? 36
 2.6 How do we observe, record and report? 38
 2.7 How do we analyse and interpret? 42

A The organism and its environment

3. The cell
 3.1 What are cells like? 44
 3.2 Investigating diffusion and osmosis 46

4. Food and nutrition
 4.1 How do plants make food? 48
 4.2 Photosynthesis and photography 52
 4.3 Uses of food nutrients 54
 4.4 Food groups and food tests 56
 4.5 What is a balanced diet? 58
 4.6 Food additives 62
 4.7 How do we use our teeth? 64
 4.8 How do we digest our food? 66
 4.9 How do enzymes work? 70

5. Respiration and air pollution
 5.1 How do we breathe? 72
 5.2 How are gases exchanged? 74
 5.3 What is respiration? 76
 5.4 Aerobic and anaerobic respiration 78
 5.5 Pollution and the respiratory system 81

6. Transport systems
 6.1 Why are transport systems needed? 84
 6.2 How are things moved around in plants? 86
 6.3 How are things moved around in humans? 88
 6.4 How are blood groups important? 92
 6.5 Control of diseases 94
 6.6 Problems with our circulatory system 96
 6.7 Why do we need exercise? 98
 6.8 Use and mis-use of drugs 100
 6.9 How can athletes train their bodies? 102

7. Excretion
 7.1 Excretion: our lungs and skin 104
 7.2 Our kidneys and osmoregulation 106
 7.3 Excretion in flowering plants 110

8. Sense organs and coordination
 8.1 What is the nervous system? 112
 8.2 Involuntary and voluntary actions 116
 8.3 What is the endocrine system? 118
 8.4 How are life processes controlled? 120
 8.5 How do our eyes work? 124
 8.6 Lenses and caring for our eyes 126
 8.7 Sounds and how our ears work 129

9. Reproduction and growth
 9.1 What are sexual and asexual reproduction? 132
 9.2 How do flowering plants reproduce? 136
 9.3 Seeds and germination 140
 9.4 Growth in plants and animals 142
 9.5 Adolescence and the menstrual cycle 146
 9.6 How do we reproduce? 148
 9.7 How are characteristics passed on? 150
 9.8 What were we like before we were born? 152
 9.9 Pre- and post-natal care 154
 9.10 What are sexually transmitted infections? 156
 9.11 The need for population control 158
 9.12 What are some birth control methods? 160

B The home and workplace

10. Temperature control and ventilation
 10.1 How is heat transferred? 164
 10.2 How do thermometers work? 168
 10.3 How is evaporation important? 170
 10.4 Temperature, humidity and ventilation 172

11. The terrestrial environment
 11.1 How is soil formed? 176
 11.2 How do soils differ? 178