
1 

Component Software and the Way Ahead 
Clemens Szyperski 

Microsoft Research 
One Microsoft Way, Redmond, WA 98053 USA 

cszypers@microsoft·com 

Abstract 

Components capture the deployment nature of software; objects capture its run­
time nature. Components and objects together enable the construction of next­
generation software. However, as discussed in this chapter, many problems still need 
to be solved before component software can become ubiquitous. One important step 
to be taken is to move from component introversion to component extroversion and 
to adopt component-based software architecture on a much broader basis. To avoid 
the many traps on that way, it is useful to emphasize: Components are units of de­
ployment and versioning but the atoms of configuration. To control the complexity 
explosion of peer-to-peer component architectures, component frameworks need to 
be pursued beyond their current weak foundation. 

1.1 Introduction 

From the early days of discovering that software construction ought to be an en­
gineering discipline it has been recognized that the one key concept to learn from 
other engineering disciplines is the notion of prefabrication of more generic parts 
and their assembly to form more specific parts. Such "parts" can figure at different 
levels and stages of a production process-but only if they form isolatable parts 
of deployed solutions should they be called software components. Parts used to 
generate the parts that are eventually deployed, should not be called software com­
ponents to avoid diffusing the component concept to a useless level of generality. In 
the remainder of this chapter, where unambiguous, software components are simply 
called components. 

The restrictive notion of software components just sketched is, of course, a prag­
matic take. From an ontological point of view, everything that can be composed 

1 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


2 Szyperski 

into a composite is a component. Since plenty of compositional concepts are used 
on the road towards deployable software, all these could be subsumed under the 
component umbrella. Examples of such compositional concepts are expressions, 
functions, statements, procedures, classes, and modules. Of these, only modules­
and only if carefully institutionalized-form the basis of software components, but 
merely primordial ones. 

Notably, there is a second space of compositional concepts that deserves separate 
attention: the space of run-time instances. Composition in this space covers con­
cepts such as co-allocation of variables, address indirection (references and point­
ers), objects, and object composition via forwarding, aggregation, or delegation. 
Especially in the space of objects, it is a common simplification to not thoroughly 
distinguish objects from classes-that is, instances from their generating descrip­
tion. However, this distinction is fundamental to the understanding of w hat software 
components should be. 

Components are on the upswing, while objects have been around for a while. It 
is therefore understandable but not helpful to see object-oriented programming sold 
in new clothes by simply calling objects "components." The emerging component­
based approaches and tools combine objects and components in ways that show 
they are separate concepts. In this chapter, some key differences between objects 
and components are examined to clarify these blurred areas. 

The remainder of this chapter is organized as follows: First, some motivating 
arguments are given for the use of components and the need to have standards. 
Then, some key terms are unfolded, explained, and justified. Based on this, a re­
fined component definition is reviewed. Following, some light is shed on the fine line 
between component-based programming and component assembly. In particular, it 
is shown that approaches based on assembly really assemble objects, not compo­
nents, but that they create new components when saving the finished assembly. 
Taking steps beyond objects, concepts of component frameworks and component 
system architecture are then introduced. 

1.1.1 Why Components? 

Reference to more mature engineering disciplines cannot and should not be the key 
argument for pushing software component technology. So, what is the rationale 
behind component software? Or rather, what is it that components should be? 
This section introduces a set of key arguments that motivate the use of components, 
intentionally preceding later sections that cover software components in detail. 

'fraditionally, closed solutions with proprietary interfaces addressed most cus­
tomers' needs. Heavyweights such as operating systems and database engines are 
among the few examples of components that have reached high levels of matu­
rity. Large software-systems manufacturers often configure delivered solutions by 
combining modules in a client-specific way. However, the interfaces between such 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


Component Software and the Way Ahead 3 

modules tend to be proprietary-at most, open to highly specialized independent 
software vendors (ISV s) that specifically produce further modules for such systems. 
In many cases, these modules are fused together during a linking step and are no 
longer distinguishable in deployed solutions. 

There are three sets of arguments in favor of component software: 

(i) Baseline argument: Component-based solutions can combine acquired and 
purpose-created components. By combining "make" and "buy", components 
offer to reduce cost by focussing on core competencies and by avoiding exces­
sive reinvention of the wheel. Hence, strategic components are made while 
non-strategic ones are bought, perhaps even off-the-shelf (COTS). This way, 
organizations can maintain their competitive edge-an issue of increasing 
importance as software dominates more and more aspects of modern organi­
zations. 

(ii) Enterprise argument: Components can be assembled in a variety of differ­
ent ways. If the component factoring is performed skillfully, then several 
products of a product line can be covered by configuring a core set of com­
ponents, plus perhaps some more product-specific ones. Product creation is 
then largely an issue of configuration. Furthermore, by versioning individ­
ual components and reconfiguring systems the evolution of products can be 
controlled. 

(iii) Dynamic computing argument: Modern software systems are increasingly 
challenged by an open and growing set of content types to be processed. A 
web browser is a good example. If well architected, such systems can be 
dynamically extended to meet new requirements on demand. 

The baseline argument is not as strong as it seems: source-level reuse may often 
be sufficient for this purpose. Likewise, the enterprise argument still allows for final 
product integration. In both cases it is thus possible to get away without investing 
into component technology that supports deployment-time components. However, 
the dynamic computing argument strictly requires components that are units of 
deployment. It is interesting to observe that the first two scenarios do benefit from 
deployable components. In the baseline case the argument is increased robustness: 
source code is a fragile basis for reuse. In the enterprise case the argument is 
increased flexibility: deployed systems can be upgraded and adapted to changing 
needs without requiring clients to install a whole new system. 

1.1.2 Component Standards 

Deployable components need to be shipped in a "binary" form, that is, a form 
that is machine processable and does not require any further human intervention. 
Traditionally, this form was a loadable image holding machine code. Alternatively, 
and long known, such a form can be lifted to match some virtual machine. Java 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


4 Szyperski 

bytecode is the presently most popular binary form for a virtual machine. In addi­
tion to binary form, a component standard needs to be established that-at this bi­
nary level-defines interoperation between components from independent providers. 
Traditionally, this task was performed by operating systems that defined a calling 
convention. With components that should go beyond simple procedural interfaces, 
new standard infrastructure is needed to effectively standardize more general calling 
conventions. 

Attempts to create low-level connection standards or wiring standards are either 
product- or standard-driven. The Microsoft standards, resting on its Component 
Object Model (COM) [Mic97, Box98 , Cha96], have always been product-driven 
and are thus incremental, evolutionary, and to a degree legacy-laden by nature. 
Standard-driven approaches usually originate in industry consortia. The prime 
example here is the Object Management Group (OMG)'s effort. However, OMG's 
Common Object Request Broker Architecture (CORBA) [Obj98] hasn't contributed 
much in the component world and is now falling back on JavaSoft's Enterprise Java­
Beans (EJB) [Jav98] standards for components, although attempting a CORBA 
Beans generalization in the CORBA 3 revision. The JavaBeans standard still has a 
way to go and it is not implementation language-neutral. Re-introducing such neu­
trality in CORBA Beans-while remaining sufficiently compatible with the evolving 
EJB specification-is a major challenge. To summarize, the situation is somewhat 
paradoxical in that it seems there is a choice between platform independence (EJB) 
and language independence (COM). The CORBA promise of offering both yet re­
mains unfulfilled in the components arena. 

At first, it might be surprising that standards for component software are largely 
pushed by desktop- and Internet-based solutions. On second thought, this should 
not be surprising at all. Component software is a complex technology to master­
and viable, component-based solutions will only evolve if the benefits are clear. 
Traditional enterprise computing has many benefits, but they all depend on enter­
prises that are willing to evolve substantially. 

In the desktop and Internet worlds, the situation is different. Centralized control 
over what information is processed when and where is not an option in these worlds. 
Instead, contents (such as web pages or documents) arrive at a user's machine 
and need to be processed there and then. With a rapidly exploding variety of 
content types-and open encoding standards such as XML, monolithic applications 
have long reached their limits. Beyond the flexibility of component software is 
its capability to dynamically grow to address changing needs: Components are 
key to the extensibility and evolvability of software systems. This is the dynamic 
computing argument introduced above. 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


Component Software and the Way Ahead 5 

1.2 Terms and Concepts 

1.2.1 What a Component Is and Is Not 

The terms "component" and "object" are often used interchangeably. In addition, 
constructions such as "component object" are used. Objects are said to be instances 
of classes or clones of prototype objects. Objects and components both make their 
services available through interfaces. Language designers add more confusion by 
discussing names paces , modules, packages, and so on. It is, therefore, useful to 
unfold and explain these terms. To remain goal-oriented, here is a first definition 
of components: 

Component A component's characteristic properties are that it is a unit of in­
dependent deployment; a unit of third-party composition; and it has no 
persistent state. 

These properties have several implications. For a component to be independently 
deployable, it needs to be separated from its environment and from other compo­
nents. A component, therefore, encapsulates its constituent features. In addition, 
since a component is a unit of deployment, it is never deployed partially. 

If a third party needs to compose a component with other components, the com­
ponent must be self-contained. (A third party is one that cannot be expected to 
access the construction details of all the components involved.) In addition, the 
component needs to come with clear specifications of what it provides and what it 
requires. In other words, a component needs to encapsulate its implementation and 
interact with its environment through well-defined interfaces and platform assump­
tions only. It is also generally useful to minimize hard-wired dependencies in favor 
of externally configurable providers. If all hard-wiring is avoided, then a compo­
nent is fully connectable (or "pluggable"): it can be used in any context where the 
required and provided interfaces can be properly connected. See Section 1.4 for a 
detailed discussion of connections and assembly. 

Finally, observe that a component without any persistent state cannot be distin­
guished from copies of its own-an important and useful property. (Exceptions to 
this rule are attributes not contributing to the component's functionality, such as 
serial numbers used for accounting.) Without state, a component can be loaded 
into and activated in a particular system--but in any given process, there will be 
at most one copy of a particular component. So, while it is useful to ask whether a 
particular component is available or not, it is meaningless to ask about the number 
of copies of that component. (Note that a component may simultaneously exist in 
different versions. However, these are not copies of a component, but rather related 
components.) Not copying components does not mean that components cannot sup­
port multiple instances. For example, a button component would exist only once 
in a deployment context, but it could support any number of button instances (see 
Section 1.2.2 below). 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


6 Szyperski 

In many current approaches, components are heavyweights. For example, a 
database server could be a component. If there is only one database maintained by 
this class of server, then it is easy to confuse the instance with the concept. In the 
example, the database server, together with the database, can be seen as a com­
ponent with persistent state. According to the definition described previously, this 
instance of the database concept is not a component. Instead, the static database 
server program is and it supports a single instance: the database object. This sep­
aration of the immutable plan from the mutable instances is key to avoid massive 
maintenance problems. If components could be mutable, that is, have state, then 
no two installations of the same component would have the same properties. The 
differentiation of components and objects is thus fundamentally about differentiat­
ing between static properties that hold for a particular configuration and dynamic 
properties of any particular computational scenario. Drawing this line carefully is 
essential to curbing manageability, configurability, and version control problems. 

1.2.2 Objects 

The notions of instantiation, identity, and encapsulation lead to the notion of ob­
jects. In contrast to the properties characterizing components, an object's charac­
teristic properties are that it is a unit of instantiation (it has a unique identity), it 
has state that can be persistent, and it encapsulates its state and behavior. 

Again, several object properties follow directly. Since an object is a unit of 
instantiation, it cannot be partially instantiated. Since an object has individual 
state, it also needs a unique identity so it can be identified, despite state changes, 
for the object's lifetime. Consider the apocryphal story about George Washington's 
axe, which had five new handles and four new axe-heads-but was still George 
Washington's axe. This is typical of objects: nothing but their abstract identity 
remains stable over time. 

Since objects get instantiated, a construction plan is needed that describes the 
new object's state space, initial state, and behavior before the object can exist. 
Such a plan may be explicitly available and is then called a class. Alternatively, it 
may be implicitly available in the form of an object that already exists, that is close 
to the object to be created, and can be cloned. Such a preexisting object is called 
a prototype object [Lie86, US87, Bla94]. 

Whether using classes or prototype objects, the newly instantiated object needs to 
be set to an initial state. The initial state needs to be a valid state of the constructed 
object, but it may also depend on parameters specified by the client asking for the 
new object. The code that is required to control object creation and initialization 
could be a static procedure, usually called a constructor. Alternatively, it can be 
an object of its own, usually called an object factory, or factory for short. 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


Component Software and the Way Ahead 7 

1.2.9 Object References and Persistent Objects 

The object's identity is usually captured by an object reference. Most program­
ming languages do not explicitly support object references; language-level references 
hold unique references of objects (usually their addresses in memory), but there is 
no direct high-level support to manipulate the reference as such. (Languages like 
C provide low-level address manipulation facilities.) Distinguishing between an 
object-an identity, state, and implementing class-and an object reference (just 
the identity) is important when considering persistence. As described later, almost 
all so-called persistence schemes just preserve an object's state and class, but not 
its absolute identity. An exception is CORBA, which defines Interoperable Object 
References (IORs) as stable entities (which are really objects). Storing an lOR 
makes the pure object identity persist. 

1.2.4 Components and Objects 

Typically, a component comes to life through objects and therefore would normally 
contain one or more classes or immutable prototype objects. In addition, it might 
contain a set of immutable objects that capture default initial state and other 
component resources. However, there is no need for a component to contain only 
classes or any classes at all. A component could contain traditional procedures 
and even have global (static) variables; or it may be realized in its entirety using 
a functional programming approach, an assembly language, or any other approach. 
Objects created in a component, or references to such objects, can become visible to 
the component's clients, usually other components. If only objects become visible 
to clients, there is no way to tell whether a component is pure object-oriented inside, 
or not. 

A component may contain multiple classes, but a class is necessarily confined to 
a single component; partial deployment of a class wouldn't normally make sense. 
Just as classes can depend on other classes (inheritance), components can depend 
on other components (import). The superclasses of a class do not necessarily need 
to reside in the same component as the class. Where a class has a superclass 
in another component, the inheritance relation crosses component boundaries and 
objects created by instantiating such a class are effectively instances carried by 
multiple components. Whether or not inheritance across components is a good 
thing is the focus of heated debate. The theoretical reasoning behind this clash 
is interesting and close to the essence of component orientation [Szy98], but it is 
beyond the scope of this chapter. 

1.2.5 Modules 

Components are rather close to modules, as introduced by modular languages in the 
early 1980s. The most popular modular languages are Modula-2 and Ada. In Ada, 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


8 Szyperski 

modules are called packages, but the concepts are almost identical. An important 
hallmark of modular approaches is the support of separate compilation, including 
the ability to properly type-check across module boundaries. 

With the introduction of the Eiffel language, the claim was that a class is a 
better module [Mey88]. This seemed justified based on the early ideas that modules 
would each implement one abstract data type (ADT). After all, a class can be 
seen as implementing an ADT, with the additional properties of inheritance and 
polymorphism. However, modules can be used, and always have been used, to 
package multiple entities, such as ADTs or classes, into one unit. Also, modules do 
not have a concept of instantiation, while classes do. (In module-less languages, this 
leads to the construction of static classes that essentially serve as simple modules.) 

Recent language designs, such as Oberon, Modula-3, and Component Pascal, 
keep the modules and classes separate. (In Java, a package is somewhat weaker 
than a module and mostly serves namespace control purposes.) Also, a module 
can contain multiple classes. Where classes inherit from each other, they can do 
so across module boundaries. Modules can be seen as minimal components. Even 
modules that do not contain any classes can function as components. It is important 
though that the modules that should function as components are individually and 
separably present at deployment time. 

Nevertheless, module concepts don't normally support one aspect of full-fledged 
components. A module does not come with persistent immutable resources, beyond 
what has been hardwired as constants in the code. Resources seem to parameterize 
a component-replacing these resources allows one to make a new version of a 
component without needing to recompile it, for example, for purposes of localization. 
Modification of resources may look like a form of a mutable component state. Since 
components are not supposed to modify their own resources (or their code), the 
component definition remains useful: resources fall into the same category as the 
compiled code that forms part of a component. 

Component technology unavoidably leads to modular solutions. The software 
engineering benefits can thus justify initial investment into component technology, 
even if component markets are not foreseen. 

1.3 Components Beyond Modules 

It is possible to go beyond the technical level of reducing components to better 
modules. To do so, it is helpful to define components differently. 

A Definition: Component "A software component is a unit of composition with 
contractually specified interfaces and explicit context dependencies only. A 
software component can be deployed independently and is subject to compo­
sition by third parties." (Workshop on Component-Oriented Programming 
at ECOOP 1996 [SP97].) 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


Component Software and the Way Ahead 9 

This definition covers the characteristic properties of components as discussed. It 
covers technical aspects such as independence, contractual interfaces, and compo­
sition, and also market-related aspects such as third parties and deployment. It is 
the unique property of components, not only of software components, to combine 
technical and market aspects. One possible-and purely technical-interpretation 
of this view maps this component concept back to that of modules, as illustrated in 
the following. 

• A component is a set of simultaneously deployed atomic components. An atomic 
component is a module plus a set of resources. 

This distinction of components and atomic components caters to the fact that 
most atomic components are not deployed individually, although they could be. 
Instead, atomic components normally belong to a set of components, and a typical 
deployment will cover the entire set. Atomic components are the elementary units of 
deployment, versioning and replacement; although it is not usually done, individual 
deployment is possible. A module is thus an atomic component with no separate 
resources. 

ActiveX, JavaBeans, and CORBA components come packaged in a form that 
satisfies this component definition. While none of these approaches uses the term 
"module", constructs of the same meaning are easily identified. For example, in 
Java packages are not modules. But the atomic units of deployment aren't modules 
either; they are class files and resources. A single package is compiled into many 
class files-one per class. However, a set of class files and a set of resources are 
combined into a JAR (Java archive) file to be shipped as a Java component. 

• A module is a set of classes and possibly constructs that are not object-oriented, 
such as procedures or functions. 

Modules may statically require the presence of other modules in order to work. 
Hence, a module can be deployed if all the modules it depends on are available. 
The dependency graph must be acyclic or else a group of modules in a cyclic­
dependency relation would always require simultaneous deployment, violating the 
defining property of modules. Also, modules that underly components should not 
have a persistent state, as argued in Section 1.2.1. 

• A resource is a frozen collection of typed items. 

The resource concept could include code resources to subsume modules. The 
point is that there are resources besides the ones generated by a compiler compiling 
a module or package. In a pure-objects approach, resources are serialized immutable 
objects. They're immutable because components have no persistent identity. Du­
plicates cannot be distinguished. 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org


10 Szyperski 

1.3.1 Interfaces 

A component's interfaces define its access points. These points let a component's 
clients, usually components themselves, access the component's services. Normally, 
a component has multiple interfaces corresponding to different access points. Each 
access point may provide a different service, catering to different client needs. It 
is important to emphasize the interface specifications' contractual nature. Since 
the component and its clients are developed in mutual ignorance, the standardized 
contract must form a common ground for successful interaction. What nontechnical 
aspects do contractual interfaces need to obey to be successful? 

First, undue market fragmentation must be avoided, as it threatens the viability 
of components. The redundant introduction of similar interfaces should also be 
minimized. In a market economy, such a minimization is usually either the result of 
early standardization efforts in a market segment, or the result of fierce eliminating 
competition. In the former case, the danger is suboptimality due to committee 
design; in the latter case, it is suboptimality due to the nontechnical nature of 
market forces. 

Second, to maximize the reach of an interface specification, and of components 
implementing this interface, common media are needed to publicize and advertise 
interfaces and components. If nothing else, this requires a small number of widely 
accepted unique naming schemes. 

1.3.2 E~plicit Conte~t Dependencies 

Besides specifying provided interfaces, the previous definition of components also 
requires components to specify their needs. That is, the definition requires specifi­
cation of what the deployment environment will need to provide, such that the com­
ponents can function. These needs are called context dependencies, referring to the 
context of composition and deployment. If there were only one software-component 
world, it would suffice to enumerate required interfaces of other components to spec­
ify all context dependencies [OB97]. For example, a mail-merge component would 
specify that it needs a file system interface. Note that with today's components even 
this list of required interfaces is not normally available. The emphasis is usually 
just on provided interfaces. 

In reality, several component worlds coexist, compete, and conflict with each 
other. Currently there are at least three major worlds emerging, based on OMG's 
CORBA, Sun's Java, and Microsoft's COM. In addition, component worlds are 
fragmented by the various computing and networking platforms. This is not likely 
to change soon. Just as the markets have so far tolerated a surprising multitude 
of operating systems, there will be room for multiple component worlds. Where 
multiple such worlds share markets, a component's context dependencies specifica­
tion must include its required interfaces and the component world (or worlds) it has 
been prepared for. 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-15569-4 - Foundations of Component-Based Systems
Edited by Gary T. Leavens and Murali Sitaraman
Excerpt
More information

http://www.cambridge.org/9780521155694
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521155694: 


