Human-induced biodiversity loss is greater now than at any time in human history, with extinctions occurring at rates hundreds of times higher than background extinction levels. The field of biodiversity economics analyses the socio-economic causes of and solutions to biodiversity loss by combining the disciplines of economics, ecology and biology. This field has shown a remarkable degree of transformation over the past four decades and now incorporates the analysis of the entire diversity of biological resources within the living world. Biodiversity Economics presents a series of papers that shows how bio-economic analysis can be applied to the examination and evaluation of the problem of various forms of biodiversity loss. Containing state-of-the-art bio-economic research by some of the leading practitioners in the field, this volume will be an essential research tool to those working on biodiversity issues in the academic, policy and private sectors.

Andreas Kontoleon is University Lecturer in the Department of Land Economy, University of Cambridge.

Unai Pascual is University Lecturer in the Department of Land Economy, University of Cambridge.

Timothy Swanson is Chair in Law and Economics at the Department of Economics and Faculty of Law, University College London.
Biodiversity Economics

Edited by
Andreas Kontoleon, Unai Pascual
and Timothy Swanson
Contents

List of figures ix
List of tables xii
List of contributors xvi
Preface xx
Acknowledgements xxii
Foreword xxiv

JEFFREY A. MCNEELY (Chief Scientist IUCN)

Introduction 1

ANDREAS KONTOLEON, UNAI PASCUAL
AND TIMOTHY SWANSON

1. Do we really care about biodiversity? 22

DAVID W. PEARCE

Part I. Causes of biodiversity loss

A. LAND CONVERSION

2. The economics of land conversion, open access and biodiversity loss 59

EDWARD B. BARBIER

3. Estimating spatial interactions in deforestation decisions 92

JUAN A. ROBALINO, ALEXANDER PFAFF
AND ARTURO SANCHEZ-AZOFIEFA

4. Resource exploitation, biodiversity loss and ecological events 115

YACOV TSUR AND AMOS ZEMEL
<table>
<thead>
<tr>
<th>B. INVASIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Pests, pathogens and poverty: biological invasions and agricultural dependence</td>
</tr>
<tr>
<td>CHARLES PERRINGS</td>
</tr>
<tr>
<td>6. Prevention versus control in invasive species management</td>
</tr>
<tr>
<td>DAVID FINNOFF, JASON F. SHOGREN, BRIAN LEUNG AND DAVID LODGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. INTERNATIONAL TRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Trade and renewable resources in a second-best world: an overview</td>
</tr>
<tr>
<td>ERWIN BULTE AND EDWARD B. BARBIER</td>
</tr>
<tr>
<td>8. International trade and its impact on biological diversity</td>
</tr>
<tr>
<td>RAFAT ALAM AND NGUYEN VAN QUYEN</td>
</tr>
</tbody>
</table>

Part II. The value of biodiversity

<table>
<thead>
<tr>
<th>A. CONCEPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Designing the legacy library of genetic resources: approaches, methods and results</td>
</tr>
<tr>
<td>TIMO GOESCHL AND TIMOTHY SWANSON</td>
</tr>
<tr>
<td>10. Why the measurement of species diversity requires prior value judgements</td>
</tr>
<tr>
<td>STEFAN BAUMGÄRTNER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Combining TCM and CVM of endangered species conservation programme: estimation of the marginal value of vultures (Gyps fulvus) in the presence of species–visitors interaction</td>
</tr>
<tr>
<td>NIR BECKER, YAELE CHORESH, MOSHE INBAR AND OFER BAHAT</td>
</tr>
<tr>
<td>12. Valuing ecological and anthropocentric concepts of biodiversity: a choice experiments application</td>
</tr>
<tr>
<td>MICHAEL CHRISTIE, NICK HANLEY, JOHN WARREN, TONY HYDE, KEVIN MURPHY AND ROBERT WRIGHT</td>
</tr>
</tbody>
</table>
Contents

13. Spatially explicit valuation with choice experiments – a case of multiple-use management of forest recreation sites 369
 PAULA HORNE, PETER BOXALL AND WIKTOR ADAMOWICZ

Part III. Policies for biodiversity conservation

A. CONTRACTS

 GARY STONEHAM, VIVEK CHAUDHRI, LORIS STRAPPAZZON AND ARTHUR HA

15. An evolutionary institutional approach to the economics of bioprospecting 417
 TOM DEDEURWAERDERE, VIJESH KRISHNA AND UNAI PASCUAL

16. An ecological-economic programming approach to modelling landscape-level biodiversity conservation 446
 ERNST-AUGUST NUPPENAU AND MARC HELMER

B. IMPLEMENTATION

17. The effectiveness of centralised and decentralised institutions in managing biodiversity: lessons from economic experiments 481
 JANA VYRASTEKOVA AND DAAN VAN SOEST

18. Conserving species in a working landscape: land use with biological and economic objectives 501

 DORIS BEHRENS AND BIRGIT FRIEDL

20. Modelling the recolonisation of native species 557
 ANDERS SKONHOFT
Part IV. Managing agro-biodiversity: causes, values and policies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>On the role of crop biodiversity in the management of environmental risk</td>
<td>Salvatore Di Falco and Jean-Paul Chavas</td>
<td>581</td>
</tr>
<tr>
<td>22</td>
<td>Assessing the private value of agro-biodiversity in Hungarian home gardens using the data enrichment method</td>
<td>Ekin Birol, Andreas Kontoleon and Melinda Smale</td>
<td>594</td>
</tr>
<tr>
<td>23</td>
<td>Agricultural development and the diversity of crop and livestock genetic resources: a review of the economics literature</td>
<td>Melinda Smale and Adam G. Drucker</td>
<td>623</td>
</tr>
</tbody>
</table>

Index

649
Figures

1.1. Stylised costs and benefits of ecosystem service provision page 25
1.2. Beneficiary pays 40
1.3. Incremental costs and the GEF 41
3.1. Illustration of the observations, neighbourhoods and neighbours 104
3.2. Region 1 and Region 2 107
6.1. Schematic of the invasion process 170
6.2. The influence of risk aversion and discounting on collective prevention 186
6.3. The influence of risk aversion and discounting on collective control 188
6.4. Dynamic effects of risk aversion and discounting on collective variables 189
6.5. Dynamic effects of risk aversion and discounting on biological variables 190
6.6. The influence of risk aversion and discounting on private adaptation 191
6.7. The influence of risk aversion and discounting on the probability of invasion 193
6.8. The influence of risk aversion and discounting on invader abundance 194
6.9. The influence of risk aversion and discounting on welfare 196
7.1. An equilibrium for the 2×2 small open economy 213
7.2. Open access equilibrium in the single-market bio-economic model 216
List of figures

7.3. Open access resource exploitation and trade in a resource-abundant economy 220
7.4. Trade patterns between North and South 226
7.5. Harvesting and growth in the absence of substitution possibilities 228
10.1. Biodiversity indices differ by the information on species and ecosystem composition they use 304
11.1. Three-stage scenarios 324
11.2. Revenues versus welfare in two alternatives 336
11.3. Expansion path 338
11.2. Conceptual framework – biodiversity concepts 354
13.1. Example of a choice set used in the choice experiment instrument 375
13.2. Welfare impacts of different scenarios with two models 381
14.1. BushTender© pilot areas in Victoria, Australia 390
14.2. Supply curves from BushTender© 402
15.1. The bioprospecting chain 425
15.2. The monetary benefit flow from the KMBS 430
15.3. Estimated cumulative distribution of farmer households and their respective WTP, controlling for cultivating and non-cultivating households of Trichopus 438
16.1. Landscape appearance as dependent on farming and land use structure 449
16.2. Stylised structure of a landscape for the construction of a mathematical interface between spatial representation and geometric measures of field sizes 450
18.1. A base case land-use pattern on the 14×14 landscape where every parcel is put into its highest economic use 524
18.2. The base case landscape economic-biological score efficiency frontier 526
18.3. Various base case land-use patterns for points that lie on the base case efficiency frontier 527
18.4. The efficiency frontiers from two reserve-site selection scenarios simulated on the default 14×14 landscape 528
List of figures

18.5. Land use patterns on the default 14×14 landscape that have landscape biological (LB) scores of approximately 77 for the reserve-site selection scenarios and the base case 529
18.6. Efficiency frontiers associated with alternative 14×14 landscapes 529
18.7. Efficiency frontiers for various sensitivity analyses on the default 14×14 landscape 530
19.1. The structure of the protected area model for the ecosystem approach (μ = 0) and the flagship approach (μ = 1) 536
19.2. The optimal dynamic visitor control strategy for the flagship approach and the ecosystem approach with low weight on the habitat (ν2 = 1) 547
19.3. The optimal (steady-state) value of the habitat, eagle population and number of visitors for different values of ν2 548
20.1. Wolf-moose economic equilibrium 572
22.1. Location of the selected ESAs 599
22.2. Sample choice set 603
Tables

1.1. Estimates of protected area costs (after James *et al.* 1999)
1.3. GEF-allocated funds and co-financing 1991–2002 ($ million)
1.4. Summary of flows of biodiversity conservation funds ($ million p.a.)
1.5. The alleged ‘global value’ of the world’s ecosystems
2.2. Thailand – random effects estimation of mangrove loss and shrimp farm area expansion, 1979–1996
2.3. Thailand – estimated elasticities for mangrove loss and shrimp farm area expansion, 1979–1996
3.1. List of plot characteristics
3.2. Descriptive statistics for Region 1 and Region 2
3.3. Estimates of the interaction parameter (ρ)
3.A.1. Regression results: probit estimates and second-stage estimates from 2SPLS
3.A.2. Regression results: first stage
5.2. Depletion of natural capital, 2003
5.3. Economic losses to introduced pests in crops, pastures and forests in the United States, United Kingdom, Australia, South Africa, India and Brazil (billion dollars per year)
List of tables

5.4. Environmental losses to introduced pests in the United States, United Kingdom, Australia, South Africa, India and Brazil (billion dollars per year) 146
5.5. Economic sanitary and phytosanitary instruments 153
6.1. Firms in the sample 182
6.2. Variables in the sample 183
6.3. Prices 183
6.4. Parameters 184
6.5. Risk preference structures 185
6.6. Changes in cumulative welfare from baseline ($) 197
8.1. Autarky prices of the agricultural and manufacturing goods 256
8.2. Change in the amount of cleared land under autarky and free trade for different population sizes 259
8.3. Impact on Southern consumer utility of positive environmental sensitivity to biodiversity loss 260
8.4. Change in the amount of cleared land with two types of Northern consumers 262
8.5. Change in the amount of cleared land under free trade with two types of Northern consumers and different levels of income shares for the ‘green consumers’ (L2 = 2) 263
8.6. The impact on biodiversity of population increase in the South 264
8.7. The impact on biodiversity levels of population increase in the North under free trade 264
8.8. The impact on biodiversity of population increase under free trade when population increases both in the North and the South 265
8.9. The impact of a technology subsidy on the ‘cleared land’ and the utility of Northern and Southern consumers. 265
8.A1. Parameters values used for numerical calculations 268
11.1. Travel cost – regression Hai-Bar 321
11.2. Travel cost – regression Gamla 322
11.3. CVM questionnaire – socio-economic characteristics of the three samples 324
List of tables

11.4. CVM questionnaire – WTP in the three samples (in NIS) 326
11.5. CVM questionnaire – use and non-use values in the three samples (in NIS) 326
11.6. CVM questionnaire – regression results of Gamla 328
11.7. CVM questionnaire – regression results of Hai-Bar 329
11.8. CVM questionnaire – regression results of general population 330
11.9. CVM questionnaire – comparing socio-economic variables of the three samples and their relation to WTP 331
11.10. The value of the marginal vulture at each site (in NIS) 332
11.11. Break-even point under different scenarios (number of vultures) 333
11.12. Cost-benefit ratios (CBR) under the different scenarios 333
11.13. Pricing, revenues and welfare 335
12.1. Summary of studies that have valued biological resources 350
12.2. Summary of biodiversity attributes and levels used in the choice experiment 356
12.3. Logit models for Cambridge and Northumberland CE samples 360
12.4. Implicit prices for Cambridge and Northumberland CE samples 361
13.1. Summary of the attributes and their levels used in choice instrument 376
13.2. Estimated model parameters (and standard errors) using site-specific and average species richness 378
14.1. Northern Victoria BushTender® pilot – participation 401
14.2. Gippsland BushTender® pilot – participation 401
14.3. Bids for the Northern Victoria pilot 401
14.4. Bids for the Gippsland pilot 401
14.5. Comparison of fixed-price scheme to discriminating auction 403
14.6. Management agreements taken up in Gippsland pilot 404
List of tables

14.7. Area of habitat secured under contracts: Northern Victoria 404
14.8. Area of habitat secured under contracts: Gippsland 405
15.1. Variable definitions and estimated double bounded dichotomous choice model 434
15.2. Mean WTP of Kani households (in Indian rupees) 437
18.A1. Summary of various base-case land-use patterns (as presented in Figures 18.3a–e) that have landscape economic and biological score combinations that lie on the efficiency frontier 525
19.1. Base case parameter values for the flagship approach 545
19.A1. Classification of equilibria according to K and \(D > 0 \) 555
20.1. Value categories 562
20.2. Wolf recolonisation example – comparative static results. 573
21.1. Sample statistics 588
21.2. Econometric estimates of mean, variance and skewness of yield 589
22.1. Home garden attributes and attribute levels used in the choice experiment 602
22.2. Home garden management and agrobiodiversity by ESA 604
22.3. Conditional logit regression of stated preference, choice experiment data 608
22.4. Conditional logit regression of revealed preference, farm household data 609
22.5. Conditional logit regression of combined stated and revealed preference data 611
22.6. Willingness to accept compensation welfare measures for each agro-biodiversity attribute per ESA per household per annum 614
22.7. Willingness to accept compensation welfare measures for home garden management scenarios per ESA per household per annum 616
Contributors

WIKTOR ADAMOWICZ, Professor & Canada Research Chair, Department of Rural Economy, University of Alberta, Canada.

RAFAT ALAM, PhD candidate, Department of Economics, University of Ottawa, Canada.

OFER BAHAT, Department of Environmental Science and Chemistry, University of Indianapolis, Ibillin, Israel.

EDWARD BARBIER, John S. Bugas Professor of Economics, Department of Economics and Finance, University of Wyoming, USA.

STEFIGAN BAUMGÄRTNER, Assistant Professor of Ecological Economics, Alfred Weber Institute of Economics, University of Heidelberg, Germany.

NIR BECKER, Professor in Economics, Department of Economics and Management Tel-Hai College, NRERC, Haifa University, Israel.

DORIS BEHRENS, Professor in Environmental Economics, Department of Economics, University of Klagenfurt, Austria.

EKIN BIROL, Research Fellow, Homerton College and Department of Land Economy, University of Cambridge, UK.

PETER BOXALL, Professor in Economics, Department of Rural Economy, University of Alberta, Canada.

ERWIN BULTE, Professor in Environmental Economics, Department of Economics, Tilburg University, The Netherlands.

VIVEK CHAUDHRI, Associate Professor, Department of Management, Monash University, Australia.

JEAN-PAUL CHAVAS, Professor of Agricultural Economics, Department of Agricultural & Applied Economics, University of Wisconsin-Madison, USA.
List of contributors

Yael Choresh, Researcher, Department of Natural Resources and Environmental Management, University of Haifa, Israel.

Michael Christie, Assistant Professor, Institute of Rural Studies, University of Wales Aberystwyth, UK.

Tom DeDeurwaerdere, Assistant Professor, National Foundation for Scientific Research, Belgium and Université catholique de Louvain, Belgium.

Salvatore Di Falco, Senior Research Fellow, Department of Agricultural and Resource Economics, University of Maryland, USA.

Adam G. Drucker, Environmental Economist, Economics of Animal Genetic Resources Conservation Programme, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia and School for Environmental Research, Charles Darwin University, Australia.

Paul Fackler, Associate Professor, Department of Agricultural and Resource Economics, North Carolina State University.

David Finnoff, Assistant Professor, Department of Economics and Finance, University of Wyoming, USA.

Birgit Friedl, Assistant Professor in Economics, Department of Economics, University of Graz, Austria.

Timo Goeschl, Professor in Environmental Economics, Alfred Weber-Institute of Economics, University of Heidelberg, Germany.

Arthur Ha, Senior Economist, Economics & Policy Research Branch, Department of Primary Industries, Victoria, Australia.

Nick Hanley, Professor in Environmental Economics, Department of Economics, University of Stirling, UK.

Marc Helmer, Department of Agricultural Policy and Market Research, Justus Liebig University, Giessen, Germany.

Paula Horne, Senior Research Fellow, Finnish Forest Research Institute, Helsinki, Finland.

Tony Hyde, Institute of Rural Studies, University of Wales Aberystwyth, UK.

Moshe Inbar, Associate Professor, Department of Biology, University of Haifa, Israel.
List of contributors

Andreas Kontoleon, Assistant Professor in Environmental Economics, Department of Land Economy, University of Cambridge, UK.

Vijesh Krishna, PhD Candidate, Faculty of Agricultural Sciences, University of Hohenheim, Germany.

Brian Leung, Department of Biology & School of Environment, McGill University, Montreal, Canada.

David Lodge, Professor in Conservation Biology, Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.

Eric Lonsdorf, Research Associate, Lincoln Park Zoo, Alexander Center for Applied Population Biology, Chicago, USA.

Kevin Murphy, Institute of Rural Studies, University of Wales Aberystwyth, UK.

Erik Nelson, PhD Candidate, Department of Applied Economics, University of Minnesota, USA.

Ernst-August Nuppenau, Professor of Agricultural Economics, Department of Agricultural Policy and Market Research, Justus Liebig University Giessen, Germany.

Unai Pascual, Assistant Professor in Environmental Economics, Department of Land Economy, University of Cambridge, UK.

David W. Pearce, Professor in Environmental Economics, University College London, London, UK.

Charles Perrings, Professor in Environmental Economics, Environment Department, University of York, UK.

Alexander Pfaff, Associate Professor in Economics & International Affairs, School of International and Public Affairs and Department of Economics, Columbia University, USA.

Steve Polasky, Fesler-Lampert Professor of Ecological & Environmental Economics, Department of Applied Economics, University of Minnesota, USA.

Nguyen V. Quyen, Associate Professor, Department of Economics, University of Ottawa, Canada.

Juan Robalino, PhD Candidate, Department of Economics, Columbia University, USA.
ARTURO SANCHEZ-AZOFEIFA, Associate Professor, Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta, Canada.

JASON SHOGRN, Stroock Distinguished Professor of Natural Resource Conservation & Management, Department of Economics and Finance, University of Wyoming, USA.

ANDERS SKONHOFT, Professor in Environmental Economics, Department of Economics, NTNU, Trondheim, Norway.

MELINDA SMALE, Senior Economist, International Plant Genetic Resources Institute and International Food Policy Research Institute, Washington, DC, USA.

ANTHONY STARFIELD, Professor, Department of Ecology, Evolution and Behavior, University of Minnesota, USA.

GARY STONEHAM, Chief Economist, Economics and Policy Research Branch, Department of Primary Industries, Victoria, Australia.

LORIS STRAPPAZZON, Principal Economist, Economics Branch, Division of Agriculture, Department of Natural Resources and Environment, Victoria, Australia.

TIMOTHY SWANSON, Professor in Law and Economics, Department of Economics and School of Laws, University College London, UK.

YACOV TSUR, Professor of Agricultural Economics, Department of Agricultural Economics and Management, The Hebrew University of Jerusalem, Israel.

DAAN VAN SOEST, Associate Professor, Department of Economics and CentER, University of Tilburg, The Netherlands.

JANA VYRASTEKOVA, Associate Professor, Department of Economics and CentER, University of Tilburg, The Netherlands.

ROBERT WRIGHT, Professor in Economics, Department of Economics and Vice-Dean, Faculty of Management, University of Stirling, UK.

JOHN WARREN, Institute of Rural Studies, University of Wales Aberystwyth, UK.

AMOS ZEMEL, Professor in Economics, Department of Energy and Environmental Physics, The Jacob Blaustein Institute for Desert Research, Ben Gurion University of the Negev, Israel.
Preface

The field of biodiversity economics, i.e. the analysis of the problems at the interface between the disciplines of economics and biology, probably has its origins primarily in the work of Colin Clark. Much of this early work looked at the exploitation of fisheries in the context of various institutional assumptions: open access, social planning, etc. Since these early efforts, the field of biodiversity economics has expanded in many different directions. It still concerns the analysis of the causes of resource overexploitation and decline, but also includes within its core the examination of the sorts of externalities involved (values) and the types of policies applied. In addition, and most crucially, the field now encompasses many resources other than simply marine resources: forests, wildlife, and even genetic resources (used in agriculture and pharmaceutical industries). The entire diversity of biological resources within the living world is now brought within the field of biodiversity economics.

All of these problems share a common aspect – the dynamic nature of biological resources. Biological resources are distinctive in that they live and grow and respond to other living things. This generates a common analysis across the entire discipline that focuses on how human societies interact with other living things and how management should take biological characteristics into consideration.

In this volume we provide a set of papers that demonstrates the application of this framework across the entire range of issues currently under consideration within this important field. We divide the volume into four sections, three representing the core areas of biodiversity economics and the last a demonstration of their application in a concrete context (agricultural biodiversity). In Part I, we commence with a set of eight papers comprising an examination of the causes of biodiversity loss. Then in Part II we turn to a section of five papers assessing the issues concerning the valuation of biodiversity. In Part III we examine the range of policies for biodiversity conservation. Finally, in Part IV, we include a case study on agricultural biodiversity: causes, values and policies. The volume as a whole serves as a demonstration of the means by which bio-economic
analysis might be applied to the examination and evaluation of the problem of various forms of biodiversity losses.

The volume emanates from a collaborative effort undertaken by an interdisciplinary network of European scientists (known as BioEcon) working to advance economic theory and policy for biodiversity conservation. The BioEcon network has provided a platform for economists, lawyers and natural scientists from leading European academic and research institutions as well as members of prominent policy organisations to work together on advancing our understanding of the anthropogenic causes of biodiversity decline as well as on developing novel economic incentives for biodiversity conservation.\(^1\) Over the past decade more institutions from all around the world have become involved in the network activities (such as its annual conference) while the network has provided the launching pad for many new researchers and research agendas in the field of biodiversity economics.\(^2\) We hope that this volume will help to consolidate this relatively new field and continue to encourage new researchers and new research agendas in the area.

ANDREAS KONTOLEON, UNAI PASCUAL, TIMOTHY M. SWANSON

\(^1\) The partners in BioEcon are: Alfred-Weber-Institute, University of Heidelberg, Germany; Center for Development Research, Department of Economics and Technological Change, University of Bonn, Germany; Centre for Economic Research, Tilburg University, Netherlands; Centre for Environment and Development Economics, Environment Department, University of York, UK; Centre for the Philosophy of Law, Université catholique de Louvain, Belgium; Department of Economics, Norwegian University of Science and Technology, Norway; Department of Economics, School of Oriental and African Studies, UK; Department of Economics, University College London, UK; Department of Land Economy, University of Cambridge, UK; Finnish Forest Research Institute, Vantaa Research Centre, Finland; Fondazione Eni Enrico Mattei, Italy; Laboratoire Montpellierain d’économie Theorique et Appliquee, Centre National de la Recherche Scientifique, Université Montpellier 1, France.

\(^2\) Details of all network activities can be found at www.bioecon.ucl.ac.uk
Acknowledgements

We are grateful to the European Commission for the initial funding of the BioEcon network under Framework V and for the guidance of Dr Martin Sharman in the development of the undertaking. We are also grateful to the European Commission, DEFRA-UK, and DIVERSITAS for their ongoing support and funding of the BIOECON annual conference. We are also grateful to several policy organisations that have been engaged in collaborative work with the BioEcon network and from which many of the chapters included in this volume have resulted. These include the IUCN-World Conservation Union, the International Food Policy Research Institute (IFPRI), the International Plant Genetic Resources Institute (IPGRI), the Organisation for Economic Co-operation and Development (OECD), the World Bank, Conservation International (CI), Resources for the Future (RFF), and the China Council for International Cooperation on Environment and Development (CCICED).

Lastly, we would like to dedicate the volume to the late Prof. David Pearce who has been an esteemed colleague, collaborator, teacher and friend to the contributors to this volume. Over the past thirty years Prof. Pearce has made several important conceptual and methodological contributions towards our understanding of the causes of biodiversity decline while he has been instrumental in popularising and establishing economic instruments for biodiversity conservation into major policy fora. The introductory chapter written specifically for this volume was sadly one of Prof. Pearce's last works. In this paper Prof. Pearce explores the strength and nature of societies’ preferences for conserving biodiversity resources and finds that in many contexts actual conservation actions and budgetary outlays fall considerably short of the ‘rhetoric’ over how much we care about biodiversity. His insightful piece concludes by highlighting the importance of accurately valuing and accounting for biodiversity resources and services in public decision making, which constituted a recurrent and far-reaching policy message from his important body of work.
Acknowledgements

Every attempt has been made to secure permission to reproduce copyright material in this title and grateful acknowledgement is made to the authors and publishers of all reproduced material. In particular, we would like to acknowledge the following for granting permission to reproduce material from the sources set out below:

Foreword

I am delighted to see that biodiversity economics has become a discipline in its own right. Those of us who have been addressing the multiple dimensions of biodiversity have long sought better ways of incorporating economic thinking into our various challenges. Biodiversity loss is a serious preoccupation for the entire science of conservation biology, which has its own journal and scientific society, but it remains weak in delivering appropriate policy advice, largely because it is not able to demonstrate the economic implications of policy alternatives.

Other parts of the biodiversity community deal with what ultimately is an economic relationship, namely sustainable use. While the concept certainly has significant ethical dimensions, it more fundamentally deals with the costs and benefits of alternative management strategies, and these often will be based on economic principles. Is it more cost-effective to have safari hunting of rhinoceros, or photo safaris? How can economic calculations of sustainable off-take incorporate stochastic events, such as annual changes in rainfall (and thus productivity of vegetation)?

Others working on biodiversity focus on very specific issues, such as the impact of invasive alien species on natural ecosystems and human economies. Quantification of the negative impacts of these invasive alien species can help to convince policy-makers to design, implement and support appropriate measures to prevent such species from becoming established or to manage them efficiently once they have become part of an ecosystem. Biodiversity economics has much to contribute to the problem of invasive aliens, clearly demonstrating the suitability of alternative approaches to the problem.

I was also pleased to see the attention being given to the non-wild parts of biodiversity, here called ‘agro-biodiversity’. The relationship between domesticated landscapes and the surrounding matrix has significant economic dimensions, as these non-domestic landscapes provide important ecosystem services to the agricultural lands. These include providing clean water, supporting pollinators, maintaining habitats for wild relatives of domesticated plants and animals (thereby providing genetic materials...
for the future), forming soils and ameliorating climate extremes. All of these have economic dimensions, and biodiversity economics has a key role to play in helping to develop appropriate incentive measures, such as systems of payment for ecosystem services, that are efficient and equitable as well as environmentally effective.

These are just a few of the topics where biodiversity economics is making important contributions. It is especially pleasing to see the breadth of institutions involved in BioEcon, demonstrating that biodiversity economics is built on a solid consensus of scholarly research.

I would like to close by paying homage to David Pearce, whose many contributions to biodiversity economics over the past few decades have been the foundation upon which so many other contributions have been built. His economics-based perspectives have helped to legitimise the arguments conservationists have been making for many decades, while also usefully challenging some of our cherished assumptions. His opening chapter well summarises many of the ideas that made his contributions so powerful to policy-makers and scientists alike. This is a worthy monument to his numerous contributions.

While biodiversity economics addresses issues such as valuation, incentives and tradeoffs, it is also apparent from this volume that much work remains to be done. This book is the best available account of the current state of the art in this important discipline. I have no doubt that the coming years will lead to even more dramatic progress in biodiversity economics. The future diversity of life on our planet depends on such progress.

JEFFREY A. MCNEELY
Chief Scientist
IUCN-The World Conservation Union
Gland, Switzerland