

Preface

Cambridge University Press 978-0-521-15282-2 - Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity Richard H. Kessin Table of Contents More information

Contents

1	A Bri	ief Introduction to Dictyostelium discoideum and its Relatives	1
2	A History of Research on Dictyostelium discoideum		
	2.1	The classical experiments of Kenneth Raper	12
	2.2	Chemotaxis and aggregation	16
	2.3	Biochemistry and molecular biology	18
3	3 The Evolutionary Biology of <i>Dictyostelium</i>		
	3.1	A digression into ecology	20
	3.2	Soil amoebae have predators	21
	3.3	The amoebae can respond to starvation in three ways	22
		3.3.1 The microcyst	25
		3.3.2 The macrocyst	25
		3.3.3 Fruiting bodies	27
	3.4	The forms of development evolved in a sequence	27
	3.5	Genetic heterogeneity in wild populations	28
	3.6	The evolution of cooperativity	29
	3.7	The cells in a <i>Dictyostelium</i> aggregate compete to form spores	30
	3.8	Size limitations in an aggregative organism	33
	3.9	The extraordinary parasitism of D. caveatum	33
	3.10	Molecular phylogeny	35

vii

xii

viii CONTENTS

4	The •	Genome and Genetics	40
	4.1	The genome is relatively small and will be sequenced soon	40
	4.2	The ribosomal genes are coded in an extra-chromosomal	
		palindrome	43
	4.3	Dictyostelium species contain several families of replicating	
		plasmids	44
	4.4	The genome is littered with transposable elements	45
		4.4.1 Tdd-2 and Tdd-3	46
		4.4.2 DIRS-1	46
		4.4.3 DRE	47
		4.4.4 Skipper	47
	4.5	The mitochondrial genome	48
	4.6	Maintaining the genome – the DNA repair mechanisms of	
		Dictyostelium	49
	4.7	Molecular genetics	50
	4.8	Mutagenesis	51
	4.9	Restriction enzyme-mediated integration	53
	4.10	Parasexual and sexual genetic manipulations	55
		4.10.1 Parasexual genetics	55
		4.10.2 Sexual recombination	57
5	Mem	branes and Organelles of Dictyostelium	59
	5.1	The plasma membrane	59
	5.2	Channels and pumps of the plasma membrane	61
	5.3	Membrane systems that transiently connect to the plasma	
		membrane	61
	5.4	Axenic cells feed by macropinocytosis	64
	5.5	Phagocytosis	66
	5.6	Lysosomes	67
	5.7	Endoplasmic reticulum, Golgi, and nuclei	68
	5.8	Mitochondria and peroxisomes	69
	5.9	The autophagic vacuole	69
6	Cell	Motility and the Cytoskeleton	70
	6.1	Actin and its binding proteins	71
		6.1.1 G-actin-binding proteins	72
		6.1.2 F-actin-binding proteins	72
		6.1.3 Cross-linking proteins	74
		6.1.4 Attaching to the membrane	75
	6.2	Myosin motors – conventional myosin	76
	6.3	Myosin motors – the unconventional myosins	78
	6.4	Building and retracting the pseudopod	79
	6.5	Strengthening the filaments of actin	82
	6.6	Moving the cell	82
	6.7	Signaling to the cytoskeleton	84
	6.8	Cytokinesis	85

			CONTENTS	s ix		
	6.9	The n	nicrotubule cytoskeleton	86		
7	The Transition from Growth to Development: From Starvation to					
	Self-S	Sustain	ing cAMP Signal Relay	89		
	7.1	Cells	can detect imminent starvation	89		
	7.2		th-specific events cease during development	92		
	7.3		irst events after starvation	93		
	7.4	YakA	A kinase regulates the growth to development transition	95		
8	Chemotaxis and Aggregation					
	8.1		verview	98		
	8.2		e are several ways to study the cellular response to P binding	99		
	8.3		nd messengers and cytoskeletal events can be studied			
			suspended cells	100		
	8.4	Comp	ponents of the cAMP signal transduction and relay			
		pathy	vay	103		
		8.4.1		105		
		8.4.2	* * * * * * * * * * * * * * * * * * *	108		
		8.4.3	cAR1 initiates G protein-dependent signal transduction pathways	111		
		8.4.4	1 •			
			conjunction with other proteins	112		
		8.4.5		114		
		8.4.6	RegA is an unusual phosphodiesterase (PDE) and			
			affects the activity of cAMP-dependent protein kinase			
			(PKA)	115		
		8.4.7	e			
			events in the cytoplasm	115		
	8.5		levelopmental regulation of chemotactic components	116		
	8.6		P and calcium mobilize the cytoskeleton	116		
	8.7		P controls motility during chemotaxis	118		
	8.8		amoebae control extracellular cAMP by secreting a	101		
	9.0		and a PDE inhibitor (PDI)	121		
	8.9		tells can sense density and aggregate size	125		
	8.10		induction of the chemotactic response	127 128		
	8.11		lizing the chemotactic machinery	128		
	8.12	activa	ity of movement and the polarity of G-protein ation	131		
	8.13	Math	ematical simulations to explain signaling in			
		Dicty	ostelium	135		
9			ion and Adhesion in the Aggregate	139		
	9.1		ebae form a sheath during aggregation	140		
	9.2		ransition from aggregation to loose mound is			
		media	ated by a transcription factor named GBF	141		

X CONTENTS

	9.3	The discovery of cell type-specific genes provided important	
		tools to study pattern formation	143
	9.4	Pattern formation begins in the mound	144
	9.5	The position of PstA, PstO, and PstAB cells	146
	9.6	Differentiation inducing factor (DIF) and the origin of	
		prestalk cells	147
	9.7	Are any prestalk genes expressed without DIF?	151
	9.8	The history of a cell affects its fate	152
	9.9	How are the constant ratios of prestalk and prespore cells	
		to be explained?	154
	9.10	What is the basis of cell sorting?	156
	9.11		158
	9.12	The cells induce several adhesion systems during formation	
		of the mound	158
		9.12.1 Gp24	159
		9.12.2 Gp80	159
		9.12.3 Gp64	162
	9.13	Substrate adhesion	162
	9.14	The genetic complexity of mound formation	163
10	The I	Behavior of Cells in the Slug	166
	10.1	The tight aggregate elongates under control of the tip	166
	10.2	Tips inhibit the formation of other tips	167
	10.3	Slugs move toward light and heat	171
	10.4	The unanticipated complexity of cells in the slug	173
		10.4.1 The prestalk region in the slug can be subdivided	174
		10.4.2 Cellular traffic and cell-type conversion during slug	
		migration	177
		10.4.3 How do prespore segments restore their severed	
		prestalk tips?	177
	10.5	How do the cells in the slug move?	178
	10.6	Gene regulation within the prestalk and prespore zones	180
		10.6.1 The <i>ecmA</i> and <i>ecmB</i> promoters are highly regulated	181
		10.6.2 Dd-STATa binds to the <i>ecmB</i> promoter inhibitory	
		sequences	182
		10.6.3 Regulation of <i>ecmA</i>	183
		10.6.4 The prespore gene promoters	184
	10.7	Sie 88 c. marante manitam inter represent of tammation	185
	10.8	The stability of the differentiated slug cells	186
	<i>a</i> :		100
11		ination	188
	11.1	Deciding when migration has gone on long enough	188
	11.2	Early steps in culmination	189
	11.3	Movements at the Mexican hat stage	192
	11.4		193
	11.5	Cellulose synthesis and the formation of stalk	197

		CONTENTS	xi
	11.6	Death comes to the stalk cells	198
	11.7	Participation of the prespore cells in culmination	199
	11.8	The final step in spore formation is regulated exocytosis	199
	11.9	The coordination of spore and stalk formation	201
	11.10	Small peptides and the timing of encapsulation	204
	11.11	Genetic experiments suggest the source of the inducer of	
		spore encapsulation	205
	11.12	Ligands for two-component sensors	206
		The targets of PKA	208
	11.14	Culmination-defective mutants	208
12	Forma	ation and Germination of Spores	210
	12.1	The spore coat has a complex architecture	210
	12.2	The proteins of the spore coat	211
	12.3	The synthesis of cellulose in spores	215
	12.4	The formation of the spore entails changes in the cytoplasm	216
	12.5	Sorocarps contain inhibitors of germination	216
	12.6	Amoebae emerge with caution	218
	12.7	The program of spore germination	219
13	Resou	urces	223
	13.1	Books	223
	13.2	Articles for the non-scientist	224
	13.3	Films and videos	225
	13.4	The Franke bibliographic database	225
	13.5	Websites	225
Rej	^f erence.	S	227
Ind	lex		285