Dictyostelium

The Dictyostelia are soil amoebae capable of extraordinary feats of survival, motility, chemotaxis, and development. Known as the "social amoebae" or "cellular slime molds," these organisms have been the subjects of serious study since the 1930s. Research in this area has been instrumental in shaping general views of differentiation, morphogenesis, and communication.

Beginning with the history of Dictyostelids, this book considers the problems of the evolution of this multicellular organism, which is characterized by its ability to transform from a single-celled organism into an elaborate assemblage of thousands of synchronously moving cells. Each stage of this development is treated in a separate chapter. The special properties of the Dictyostelid genome are rigorously analyzed, and the methods available to manipulate genes are presented in detail. Research techniques that enable many cell biology problems to be approached are also presented. Throughout, the emphasis is on combining classical experiments with modern molecular findings, and this book represents the only modern synthesis of such material.

Richard H. Kessin is Professor of Anatomy and Cell Biology at Columbia University.

Cambridge University Press
978-0-521-15282-2 - Dictyostelium: Evolution, Cell Biology, and the Development of
Multicellularity
Richard H. Kessin
Frontmatter
More information

Developmental and Cell Biology Series SERIES EDITORS

Jonathan B. L. Bard, Department of Anatomy, Edinburgh University Peter W. Barlow, Long Ashton Research Station, University of Bristol David L. Kirk, Department of Biology, Washington University

The aim of the series is to present relatively short critical accounts of areas of developmental and cell biology where sufficient information has accumulated to allow a considered distillation of the subject. The fine structure of cells, embryology, morphology, physiology, genetics, biochemistry and biophysics are subjects within the scope of the series. The books are intended to interest and instruct advanced undergraduates and graduate students and to make an important contribution to teaching cell and developmental biology. At the same time, they should be of value to biologists who, while not working directly in the area of a particular volume's subject matter, wish to keep abreast of developments relevant to their particular interests.

RECENT BOOKS IN THE SERIES

18. C. J. Epstein The consequences of chromosome imbalance:	
principles, mechanisms and models	0521 25464 7
19. L. Saxén Organogenesis of the kidney	0521 30152 1
20. V. Raghavan Developmental biology of the fern gametophytes	0521 33022 X
21. R. Maksymowych Analysis of growth and development in Xanthium	0521 35327 0
22. B. John Meiosis	0521 35053 0
23. J. Bard Morphogenesis: the cellular and molecular processes	
of developmental anatomy	0521 43612 5
24. R. Wall This side up: spatial determination in the early	
development of animals	0521 36115 X
25. T. Sachs Pattern formation in plant tissues	0521 24865 5
26. J. M. W. Slack From egg to embryo: regional specification in	
early development	0521 40943 8
27. A. I. Farbman Cell biology olfaction	0521 36438 8
28. L. G. Harrison Kinetic theory of living pattern	0521 30691 4
29. N. Satoh Developmental biology of Ascidians	0521 35221 5
30. R. Holliday Understanding ageing	0521 47802 2
31. P. Tsonis Limb regeneration	0521 44149 8
32. R. Rappaport Cytokinesis in animal cells	0521 40173 9
33. D. L. Kirk Volvox: molecular genetic origins of multicellularity	
and cellular differentiation	0521 45207 4
34. R. L. Lyndon The shoot apical meristem: its growth and development	0521 40457 6
35. D. Moore Fungal morphogenesis	0521 55295 8
36. N. Le Douarin & C. Kalcheim The Neural Crest, Second Edition	0521 62010 4
37. P. R. Gordon-Weeks Neuronal Growth Cones	0521 44491 8
38. R. H. Kessin Dictyostelium: evolution, cell biology, and the development	
of multicellularity	0521 58364 0

Dedicated to:

The Kessins—Galene, Nat, Ruth, Lois, Zach, and Jessica

and

The Frankes-Gely, Ettaly, and Arva

Dictyostelium

Evolution, Cell Biology, and the Development of Multicellularity

RICHARD H. KESSIN Columbia University

Bibliography by Jakob Franke Columbia University

Cambridge University Press
978-0-521-15282-2 - Dictyostelium: Evolution, Cell Biology, and the Development of
Multicellularity
Richard H. Kessin
Frontmatter
More information

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521152822

© Cambridge University Press 2001

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001 First paperback printing 2010

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Kessin, Richard H., 1944– Dictyostelium: evolution, cell biology, and the development of multicellularity / Richard H. Kessin; bibliography by Jakob Franke.
p. cm – (Developmental and cell biology series) Includes bibliographical references.
1. Dictyostelium. I. Title. II. Series.
QK635.D5 K47 2001
579.4'32 – dc21
00-037820

ISBN 978-0-521-58364-0 Hardback ISBN 978-0-521-15282-2 Paperback

Additional resources for this publication at www.cambridge.org/9780521152822

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Preface

1	A Brief Introduction to Dictyostelium discoideum and its Relatives		
2	A Hi	story of Research on Dictyostelium discoideum	9
	2.1	The classical experiments of Kenneth Raper	12
	2.2	Chemotaxis and aggregation	16
	2.3	Biochemistry and molecular biology	18
3	The I	Evolutionary Biology of <i>Dictyostelium</i>	20
	3.1	A digression into ecology	20
	3.2	Soil amoebae have predators	21
	3.3	The amoebae can respond to starvation in three ways	22
		3.3.1 The microcyst	25
		3.3.2 The macrocyst	25
		3.3.3 Fruiting bodies	27
	3.4	The forms of development evolved in a sequence	27
	3.5	Genetic heterogeneity in wild populations	28
	3.6	The evolution of cooperativity	29
	3.7	The cells in a <i>Dictyostelium</i> aggregate compete to form spores	30
	3.8	Size limitations in an aggregative organism	33
	3.9	The extraordinary parasitism of D. caveatum	33
	3.10	Molecular phylogeny	35

Cambridge University Press		
978-0-521-15282-2 - Dictyostelium: H	Evolution, Cell	Biology, and the Development of
Multicellularity		
Richard H. Kessin		
Frontmatter		
More information		

viii CONTENTS

4	The	Genome and Genetics	40
	4.1	The genome is relatively small and will be sequenced soon	40
	4.2	The ribosomal genes are coded in an extra-chromosomal	
		palindrome	43
	4.3	Dictyostelium species contain several families of replicating	
		plasmids	44
	4.4	The genome is littered with transposable elements	45
		4.4.1 Tdd-2 and Tdd-3	46
		4.4.2 DIRS-1	46
		4.4.3 DRE	47
		4.4.4 Skipper	47
	4.5	The mitochondrial genome	48
	4.6	Maintaining the genome – the DNA repair mechanisms of	
		Dictyostelium	49
	4.7	Molecular genetics	50
	4.8	Mutagenesis	51
	4.9	Restriction enzyme-mediated integration	53
	4.10	Parasexual and sexual genetic manipulations	55
		4.10.1 Parasexual genetics	55
		4.10.2 Sexual recombination	57
5	Mem	branes and Organelles of Dictyostelium	59
	5.1	The plasma membrane	59
	5.2	Channels and pumps of the plasma membrane	61
	5.3	Membrane systems that transiently connect to the plasma	
		membrane	61
	5.4	Axenic cells feed by macropinocytosis	64
	5.5	Phagocytosis	66
	5.6	Lysosomes	67
	5.7	Endoplasmic reticulum, Golgi, and nuclei	68
	5.8	Mitochondria and peroxisomes	69
	5.9	The autophagic vacuole	69
6	Cell	Motility and the Cytoskeleton	70
	6.1	Actin and its binding proteins	71
		6.1.1 G-actin-binding proteins	72
		6.1.2 F-actin-binding proteins	72
		6.1.3 Cross-linking proteins	74
		6.1.4 Attaching to the membrane	75
	6.2	Myosin motors – conventional myosin	76
	6.3	Myosin motors – the unconventional myosins	78
	6.4	Building and retracting the pseudopod	79
	6.5	Strengthening the filaments of actin	82
	6.6	Moving the cell	82
	6.7	Signaling to the cytoskeleton	84
	6.8	Cytokinesis	85

Cambridge University Press
978-0-521-15282-2 - Dictyostelium: Evolution, Cell Biology, and the Development of
Multicellularity
Richard H. Kessin
Frontmatter
More information

		CONTENTS	ix
	6.9	The microtubule cytoskeleton	86
7	The T	Fransition from Growth to Development: From Starvation to	
		-	89
	7.1	Cells can detect imminent starvation	89
	7.2		92
	7.3		93
	7.4	YakA kinase regulates the growth to development transition	95
8	Chem	88 8	98
	8.1		98
	8.2	There are several ways to study the cellular response to cAMP binding	99
	8.3	Second messengers and cytoskeletal events can be studied	
			00
	8.4	Components of the cAMP signal transduction and relay	
			03
		1 66 6	05
		1 1	08
		8.4.3 cAR1 initiates G protein-dependent signal transduction	
		1 5	11
		8.4.4 The $\beta\gamma$ subunit stimulates adenylyl cyclase (ACA) in	12
		5 1	12
		8.4.6 RegA is an unusual phosphodiesterase (PDE) and	14
		affects the activity of cAMP-dependent protein kinase	
			15
		8.4.7 The PKA is essential for gene induction and regulates	
			15
	8.5		16
	8.6	cGMP and calcium mobilize the cytoskeleton 1	16
	8.7	, 6	18
	8.8	The amoebae control extracellular cAMP by secreting a	
			21
	8.9	,	25
	8.10	*	27
	8.11		28
	8.12	Polarity of movement and the polarity of G-protein	31
	8.13	activation 1 Mathematical simulations to explain signaling in	51
	0.15	· · · ·	35
9	Diffe	rentiation and Adhesion in the Aggregate 1	39
,	9.1	00 0	40
	9.2	The transition from aggregation to loose mound is	0
			41

Richard H. Kessin	Cambridge University Press	
Richard H. Kessin	978-0-521-15282-2 - Dictyostelium: Evoluti	on, Cell Biology, and the Development of
	Multicellularity	
Frontmatter	Richard H. Kessin	
	Frontmatter	
More information	More information	

X CONTENTS

	9.3	The discovery of cell type-specific genes provided important	
		tools to study pattern formation	143
	9.4	Pattern formation begins in the mound	144
	9.5	The position of PstA, PstO, and PstAB cells	146
	9.6	Differentiation inducing factor (DIF) and the origin of	
		prestalk cells	147
	9.7	Are any prestalk genes expressed without DIF?	151
	9.8	The history of a cell affects its fate	152
	9.9	How are the constant ratios of prestalk and prespore cells	
		to be explained?	154
	9.10	What is the basis of cell sorting?	156
	9.11	Overexpression of PKA can compensate for a lack of cAMP	158
	9.12	The cells induce several adhesion systems during formation	
		of the mound	158
		9.12.1 Gp24	159
		9.12.2 Gp80	159
		9.12.3 Gp64	162
	9.13	Substrate adhesion	162
	9.14	The genetic complexity of mound formation	163
10	The l	Behavior of Cells in the Slug	166
	10.1	The tight aggregate elongates under control of the tip	166
	10.2	Tips inhibit the formation of other tips	167
	10.3	Slugs move toward light and heat	171
	10.4	The unanticipated complexity of cells in the slug	173
		10.4.1 The prestalk region in the slug can be subdivided	174
		10.4.2 Cellular traffic and cell-type conversion during slug	
		migration	177
		10.4.3 How do prespore segments restore their severed	
		prestalk tips?	177
	10.5	How do the cells in the slug move?	178
	10.6	Gene regulation within the prestalk and prespore zones	180
		10.6.1 The ecmA and ecmB promoters are highly regulated	181
		10.6.2 Dd-STATa binds to the <i>ecmB</i> promoter inhibitory	
		sequences	182
		10.6.3 Regulation of <i>ecmA</i>	183
		10.6.4 The prespore gene promoters	184
	10.7	Slugger mutants maintain their repression of culmination	185
	10.8	The stability of the differentiated slug cells	186
11	Culm	ination	188
	11.1	Deciding when migration has gone on long enough	188
	11.2	Early steps in culmination	189
	11.3	Movements at the Mexican hat stage	192
	11.4	The anatomic details of a culminant	193
	11.5	Cellulose synthesis and the formation of stalk	197

Cambridge University Press	
978-0-521-15282-2 - Dictyostelium: Evolution, Cell Biology, and the Development of	
Multicellularity	
Richard H. Kessin	
Frontmatter	
More information	

		CONTENTS	xi
	11.6	Death comes to the stalk cells	198
		Participation of the prespore cells in culmination	199
	11.8	The final step in spore formation is regulated exocytosis	199
		The coordination of spore and stalk formation	201
		Small peptides and the timing of encapsulation	204
		Genetic experiments suggest the source of the inducer of	-0.
		spore encapsulation	205
	11.12	Ligands for two-component sensors	206
		The targets of PKA	208
		Culmination-defective mutants	208
12	Form	ation and Germination of Spores	210
	12.1	The spore coat has a complex architecture	210
	12.2	The proteins of the spore coat	211
	12.3	The synthesis of cellulose in spores	215
	12.4	The formation of the spore entails changes in the cytoplasm	216
		Sorocarps contain inhibitors of germination	216
	12.6	Amoebae emerge with caution	218
	12.7	The program of spore germination	219
13	Resou	irces	223
	13.1	Books	223
	13.2	Articles for the non-scientist	224
	13.3	Films and videos	225
	13.4	The Franke bibliographic database	225
	13.5	Websites	225
References			227
Index			285

Preface

I was an undergraduate when I first saw a film of *Dictyostelium* aggregating, and decided that it was something I had to study. It would be great to say, 30-odd years later, that I had a clear vision of great issues in biology that could be addressed with such an organism, but actually I just thought it was neat. I suppose it had the correct combination of interest and mystery. Like hundreds, if not thousands of people before and since, I was fascinated by its regularity, its rhythms, and for someone schooled in bacteriophage, it seemed simple. If you are blessed with youth and think *Dictyostelium* development is simple, I hope this book will help you to realize your error without discouraging you.

The thousands who have been taken by this strange little organism include better minds than ours. John Tyler Bonner tells of being a young assistant professor at Princeton who one day received a call to show his slime mold films to Albert Einstein. John showed up with his 16 mm projector and he thinks Einstein and his colleagues were suitably impressed, but he does not actually know. John speaks wonderful French, but Einstein conversed in German.

When I first started to work on this organism, with Maurice and Raquel Sussman at Brandeis University, it was thought remarkable that a eukaryotic organism induced genes and enzymes, just like *E. coli* induced the gene for β -galactosidase. The natural synchrony of development let the Sussmans follow the enzymes responsible for polysaccharide synthesis. Before the advent of cloning, we were limited in our studies of gene induction to adding actinomycin D and cycloheximide, and for many years this was a great frustration. There was a whole counter-school that explained changes in enzyme activity on the basis of substrate fluxes. I remember lots of differential equations. Now, after cloning, Northern blots and RT–PCR, it is assuming to realize that there was

PREFACE xiii

ever such a conflict, but at the time it was vicious. The book that follows presents quite a lot of history of the field. I hope that readers will find that interesting. I was a history major and perhaps I overemphasize it. Skip it if you like, but Andre Lwoff once said that it is dangerous to parachute young scientists into a new field without some idea of what came before, and I believe him. People in our little field have remarkable longevity, so if you are giving a talk, say, at a conference in 2007, and you have missed the fact that what you are discussing was done by John Bonner in 1957 or Ikuo Takeuchi in 1973, someone is likely to remind you.

Research with *Dictyostelium* has always focused on development, but now that our amoebae have become so amenable to molecular and genetic techniques, they are being used to study a variety of other problems. We can investigate cell motility, transporters, pathogenesis of certain bacteria, or osmoregulation, without ever letting the organisms develop. With the sequencing of the genome, the pace of research will increase. It is already possible to obtain important sequence information from the database. As more interesting sequences appear, my prediction for the future is a greater use of *Dictyostelium* to investigate problems in cell biology. But I am not sure my predictive skills are any better now than they were thirty years ago.

I hope this book will be useful, no matter what the problem under investigation. I have organized it into modules that separate subjects that are normally lumped together. Pattern formation in the mound is separate from the patterning in slugs. These subjects are considered in strict developmental chronology because I think it is less confusing that way. Many of the overlapping roles of the cytoskeleton have been considered separately. Where controversy exists – and there are many – I have tried to point these out. I do not necessarily take a side. In all cases the reader can find the literature, and I hope the book will present the context – if not the solution.

Naturally, I have many people to thank. In addition to the Sussmans, there are my old teachers at Yale – Chris Mathews and Gerry Wyatt. Peter Newell survived my arrogance as a post-doc and has contributed greatly to the current volume. Frank Rothman welcomed me to his laboratory at Brown, and Bill Gelbart was a great friend at Harvard.

For many years it has been my good fortune to work with Jakob Franke, who is good at everything that I cannot do. He has provided the bibliography on which this book is based. Nearly all of the researchers in the field have used his bibliography and realize its value. Jakob has also been the copy-editor of the book, but any mistakes that remain are my fault. There are probably more than a few and I am sure that my friends and colleagues will point out failures due to omission. There are more than 1000 references in the bibliography, but I am sure that I have left out a favorite paper of nearly everyone. I hope there are relatively few factual errors; Jakob has hunted most of them down. I have also to thank Tristan Smith, formerly of the Bronx High School of Science, now an undergraduate at the University of Chicago, for helping me assemble the figures. Ellen Cohen, an undergraduate at Cornell, was also a great help.

xiv PREFACE

Many people have read chapters. There is enough that is controversial so that no amount of reading can smooth out all errors of emphasis or omission. Nonetheless, there are many people to thank for reading and for supplying figures. These include Bill Loomis, Rob Kay, Larry Blanton, Mark Grimson, Rex Chisholm, Margaret Clarke, Ted Steck, Ted Cox, Alan Kimmel, Steve Alexander, Richard Gomer, Adam Kuspa, Gad Shaulsky and Chris West. The initial chapters were written in the laboratory of Michel Véron and I thank him. Thomas Winckler hunted down the original reference of Brefeld and had photographs made. Carole Parent made invaluable changes in the chapter on aggregation. Herb Ennis, now working with us in what he thinks is semiretirement, read and corrected the chapter on spore germination. John Bonner, who has much more experience at writing books than I do, read a number of chapters and gave great encouragement. He showed his enthusiasm for research and writing throughout.

The members of my laboratory, Jakob Franke, Herb Ennis, Stefan Pukatzki, Dee Dao, Grant Otto, Mary Wu, and Palma Volino, kept experiments going during this exercise and I thank them. They are probably not looking forward to having me back in the lab. My colleague Gregg Gundersen was a great help with the chapter on motility, as was John Condeelis of the Albert Einstein College of Medicine.

My hope is that this book will help many people use *Dictyostelium* as an experimental organism. I have included a Resources chapter to help with technical details, including media and recipes. The amoebae have a lot to offer and the tools that biologists love – genetics, genomics, biochemistry – are always improving. I have found, over the years, that the major benefit of the organism is the people who work on it. On the whole, we are a remarkably congenial crowd, and our annual meeting has something of the atmosphere of a camp meeting. We all look forward to it, wherever it is. At the last meeting I organized with Greg Podgorski, at Snowbird in Utah, the staff of the resort had recently hosted a conference of Prozac sales people. They thought we were much more fun, and no doubt they were right.

Richard Kessin New York, August, 2000