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Particles and continuous materials

The science of mechanics comprises the study of motion (or equilibrium) and the

forces which cause it. The blood moves in the blood vessels, driven by the pumping

action of the heart; the vessel walls, being elastic, also move; the blood and the walls

exert forces on each other, which influence their respective motions. Thus, in order to

study the mechanics of the circulation, we must first understand the basic principles

of the mechanics of fluids (e.g. blood), and of elastic solids (e.g. vessel walls), and

the nature of the forces exerted between two moving substances (e.g. blood and vessel

walls) in contact.

As well as studying the relatively large-scale behaviour of blood and vessel walls as

a whole, we can apply the laws of mechanics to motions right down to the molecular

level. Thus, ‘mechanics’ is taken here to include all factors affecting the transport of

material, including both diffusion and bulk motion.

The study of mechanics began in the time of the ancient Greeks, with the formu-

lation of ‘laws’ governing the motion of isolated solid bodies. The Greeks believed

that, for a body to be in motion, a force of some sort had to be acting upon it all

the time; the physical nature of this force, exerted for example on an arrow in flight,

was mysterious. The need for such a force was related to one of the paradoxes of the

Greek philosopher Zeno: that the arrow occupies a given position during one instant,

yet is simultaneously moving to occupy a different position at a subsequent instant.

These matters were not fully resolved until the seventeenth century when Isaac

Newton formulated his three laws of motion, which form the basis of all the mechanics

described in this book. The laws refer to the motion of individual particles, which are

defined as objects with mass (so that, for example, the Earth exerts a gravitational

pull on them), but which occupy single points (that is, they have no size). Of course,

every real body, even one as small as an atom or an electron, has a finite size, but

the laws of particle mechanics can be directly applied both to real bodies in isolation

(like the arrow of Zeno’s paradox, or the Earth in its motion round the Sun, or an

individual red blood cell) and to extensive regions of continuous matter which can

be deformed into different configurations. Examples of such deformable materials
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4 1. Particles and continuous materials

include all elastic solids, like steel, rubber and blood vessel walls, and all fluids, like

water, treacle, blood plasma and air. Both liquids and gases are described here as

fluids, since the laws of motion are applied in exactly the same way to each.

Newton’s laws can be applied to bodies of finite size because it can be proved

that a body will move as if all of its mass and all the external forces acting on it

were concentrated at one point. This point is called the centre of mass.1 Thus, the

flight of the centre of mass of Zeno’s arrow is the same as that of a particle of

the same mass, acted on by the same forces of gravity and air resistance. Similarly, the

motion through space of the Moon, or the Earth, or another planet, can be described

by particle mechanics. So can the motion of the centre of mass of a blood cell, as

long as the forces exerted on it by the surrounding plasma are known. However, the

tumbling of a red cell, or the rotation of the Earth about its axis, or any other motion

of a body relative to its centre of mass, depends on the detailed shape of the body and

cannot be described as if the body were a particle.

The application of Newton’s laws to the motion of continuous deformable mate-

rials is more difficult to justify. It is bound up with the implicit assumption that the

fluids and solids we are interested in are continuous materials. In fact, physicists have

long known that all matter is made up of molecules, bound together in various config-

urations by forces of various strengths,2 and consisting of numbers of atoms. These

in turn consist of central nuclei, surrounded by clouds of electrons, moving in orbits

whose diameters are large compared with those of the nuclei. The motion of electrons

round a nucleus is analogous to that of the planets round the sun, and like the solar

system, most of an atom (and hence most matter) consists of empty space. Some typ-

ical dimensions are given in Table 1.1. It might be supposed that each nucleus, and

each electron, or each atom, or even each molecule could be regarded as a particle,

and its motion under the influence of the intermolecular forces deduced from New-

ton’s laws. However, in air at normal temperature and pressure, for example, there

are roughly 1020 molecules per cubic centimetre, and the position of each one would

have to be specified precisely. Such a task is virtually impossible. The fact that the

spacing between molecules is usually very small compared with the dimensions of

the natural or experimental regions of fluid whose motion we wish to describe (see

Table 1.1) indicates how we can overcome the difficulty. We may suppose the mate-

rial to be divided up into a large number of elements whose dimensions are very small

1 The centre of mass of a body is the same as its centre of gravity: if in the region of the Earth’s surface the body
is suspended by a string successively attached to various parts of it, there is one point in the body through which
the straight line formed by extending the line of the string downwards always passes. This point is the centre of

gravity.
2 In a solid, the intermolecular forces are very strong and the molecules vary their relative positions only slightly;

the spacing between molecules is comparable to their size. In a liquid, the intermolecular forces are less strong;
molecules can move about readily (although their spacing is still comparable to their size) and they undergo fre-
quent collisions. In a gas, the intermolecular forces are weak and the spacing is large compared with molecular
dimensions, although it is still a very small distance (approximately 3×10−9 m (3nm) for air at normal tempera-
ture and pressure).

www.cambridge.org/9780521151771
www.cambridge.org


Cambridge University Press
978-0-521-15177-1 — The Mechanics of the Circulation
C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Particles and continuous materials 5

Table 1.1. Typical dimensions

Dimension (m)

Diameter of:

an atomic nucleus 2×10−15

an atom or gas molecule 6×10−10

a polymer molecule ∼10−8

Spacing of gas molecules 3×10−9

Diameter of:

a red blood cell 8×10−6

a capillary 4–10×10−6

an artery 10−2

the Earth 1.2×107

the Sun 1.4×109

the solar system 1.2×1013

a galaxy 1020

Spacing between galaxies 1022

compared with those of the region of interest, but which still contain a very large

number of molecules. With regard to the experiment, such an element effectively

occupies a point, and can therefore be considered as a particle; with regard to molec-

ular motions, however, it is very large, and its overall properties, like its velocity, or

the density of the material in it, can be obtained by averaging over all the molecules

which comprise it. We are thus able to ignore the random nature of molecular motion

and treat materials as continuous. Newton’s laws can now be applied to each element

of the material (called a fluid element, or fluid particle, when the material is a fluid),

and a precise and useful description of the motion as a whole will emerge.

In blood there are some very large molecules (e.g. lipoproteins, diameter about 3–

5×10−8 m), and it flows in some very narrow tubes (some capillaries have a diameter

as low as 4×10−6 m); but even so, the tube diameter is large compared with molecular

dimensions. Thus blood plasma, for example, can be treated as a continuous fluid in

the manner outlined above. Whole blood, however, cannot always be so treated, since

it consists not only of plasma, but also of large numbers of cells which amount to

about 45% of volume in normal man, and consist primarily of red blood cells (see

Chapter 10). It would be convenient if the cells were small and numerous enough for

their separate identity to be ignored, and their effect on the motion of whole blood,

regarded as a continuous fluid, to be described in an average way. This is the case

in large arteries (the diameter of the aorta, for example, is roughly 2000 times that of

a red cell), but the diameter of a capillary is comparable to that of a red cell, and a

description of flow in such small vessels must treat plasma and cells separately. To

sum up, then, whole blood is effectively continuous in large vessels, but is not so in

the microcirculation; plasma is continuous in both.

In Part I of this book, we shall develop the fundamental mechanics of continuous

fluids and solids, although we must first outline Newton’s laws of particle mechanics.
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6 1. Particles and continuous materials

The mathematical symbols which appear are used solely as a form of shorthand, fa-

cilitating the precise expression of mechanical laws. They are all explained in words

wherever they first appear, and a reader who knows some calculus will find much of

the notation familiar.
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Particle mechanics

Position

In order to describe the motion of a particle we must be able to describe accurately

its position in space, which changes as the particle moves. To do this we suppose

three straight lines to be drawn and fixed in space, all passing through a given point

O, and each one perpendicular to the other two. The lines of intersection of two

walls and the floor of a room are examples, with O in the corner of the room. If a

fly were walking on the wall of the room (Fig. 2.1a), we could specify its position

at any instant by recording its distance (say z) from the floor and its distance (say x)

from a perpendicular wall. Similarly, if the fly were flying in the room, its position

could be specified by recording its perpendicular distances from the three mutually

perpendicular planes (the floor and two walls). And so it is with any point P whose

position we wish to specify. Suppose that lines are drawn through P which inter-

sect the three original lines at right angles at the points X, Y, Z (Fig. 2.1b). The

Fig. 2.1. (a) The position of a fly on the side wall of a room, specified by its distance x from
the end wall and its distance z from the floor; x and z are its coordinates relative the the axes
formed by the lines OX, OZ. (b) The position of a point P in three dimensions (a fly flying
in a room) can be specified by its distances (x, y, z) from three mutually perpendicular planes
(two walls and the floor). The coordinates of P are (x, y, z). The corner of the room O is the
origin of coordinates.
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8 2. Particle mechanics

three lengths OX (say x), OY(y), and OZ(z) then uniquely specify the position of P.

These lengths are called the coordinates of P with respect to the three axes through

O. The lines OX, OY and OZ are usually called the x-axis, y-axis and z-axis respec-

tively. The total distance of P from O can be shown from Pythagoras’ theorem to be

equal to
√

x2 + y2 + z2; this quantity is independent of the directions of the axes.

It is essential to remember two things implicit in this description. First, although

the choice of the point O and the three axes is arbitrary, once it has been made it

must be adhered to consistently. For instance, it would be hopeless to try to discuss

the interaction between two particles if their positions were specified in relation to

different corners of the room. We usually choose axes in the most convenient way –

for example, if a particle is moving about on a flat plane (the fly on the wall), it is

sensible to take one of the axes (say OY) perpendicular to that plane, so that y always

remains constant and only two lengths, x and z, need be specified. Second, the units of

length by which x, y and z are measured must be specified explicitly, and always used

consistently. A length is not just a number, it is a quantity with dimension, and units

are required to measure it. In this book, we shall usually use metres (m), centimetres

(1cm = 10−2 m) or micrometres (1µm = 10−6 m); the whole question of units will be

fully discussed later (Chapter 3).

Velocity

Another quantity of importance in describing the motion of a particle is its velocity,

or the rate at which its position changes. Consider a particle moving along a straight

line, OX (Fig. 2.2a), so that its position is specified by one coordinate, its distance x

from O. If its coordinate at time t is x and its coordinate a little time later (t �) is x�,

then the average velocity or speed of the particle in the interval of time from t to t � is

υ = (x�− x)/(t �− t). This is well defined however short the time interval is; even if

we let the interval become so short that t �− t, and hence x�−x, is vanishingly small, υ

is still defined. The value to which υ tends as t �− t tends to zero is the instantaneous

velocity of the particle at time t; it is written

υ =
dx

dt
(2.1)

evaluated at time t. The velocity is clearly negative if the particle is moving back

towards O, so that x� is less than x.

The definition of dx/dt can be understood graphically from (Fig. 2.2b). The upper

graph shows how x varies with time t. Representative points P(x, t) and P�(x�, t �) are

marked. The quantity (x�− x)/(t �− t) is the tangent of the angle φ between the line

joining the two points and the time axis. This quantity is called the slope of that line.

As t �− t tends to zero, the point P� moves towards the point P, and the line joining

them approaches the tangent to the curve at P (shown in Fig. 2.2b as a dash–dot line).

www.cambridge.org/9780521151771
www.cambridge.org


Cambridge University Press
978-0-521-15177-1 — The Mechanics of the Circulation
C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, Assisted by K. H. Parker
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Velocity 9

Fig. 2.2. (a) A particle moving along a line OX is at distance x from a fixed point O at time
t, and at distance x� at a later time t �. The quantity (x�− x)/(t �− t) is the average velocity of
the particle during the time interval from t to t �. As this interval is made shorter, so that t �− t
tends to zero, x� − x also becomes shorter, but the average velocity tends to a well-defined
limit, υ . This is the velocity of the particle at time t. (b) The upper graph shows the distance
x plotted against time (for a particular motion of the particle). The quantity (x�− x)/(t �− t)
is the slope of the line PP� (and is equal to tanφ ). As t �− t tends to zero, this line becomes
the tangent to the curve at the point P (broken line), whose slope is equal to υ (= tanψ),
the velocity of the particle at time t. The lower graph shows the corresponding plot of υ
against t.

The quantity dx/dt, i.e. υ , is thus seen to be the slope of the tangent to the curve at

P, and takes the value tanψ . The corresponding graph showing how υ varies with t is

also presented in Fig. 2.2b.

The resolution of Zeno’s paradox lies in the performance of this limiting procedure;

without it there is no way of defining the instantaneous velocity of a particle in terms

of its position at successive times. The procedure was in fact not thought of until the

seventeenth century, when the calculus was first developed by Newton and Leibniz. In

the notation of the calculus, the symbol d/dt represents the rate of change of a quantity

with time; in this example, all we mean by dx/dt is the rate at which x changes with

time t. The units of velocity must be taken to be consistent with the units chosen for

distance and time. If distance is measured in metres and time in seconds, then velocity

must be measured in metres per second (ms−1).

The above definition of velocity can readily be extended to situations where the par-

ticle is moving in three dimensions. If the fly already referred to were to fly from one

corner of the room to the opposite corner, all its coordinates would change with time.
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10 2. Particle mechanics

Fig. 2.3. The arrow marked v represents the velocity of a particle, with magnitude V and a
certain direction. The component of the velocity in the direction of a coordinate axis is equal
to υx =V cosθ , υy =V cosφ , υz =V cosψ .

The specification of how they all vary would fully determine its motion. The point

X of Fig. 2.1 moves along the x-axis with velocity υx = dx/dt, the point Y moves

along the y-axis with velocity υy = dy/dt and the point Z moves along the z-axis with

velocity υz = dz/dt. The (three-dimensional) velocity of P is thus fully determined

by the three quantities (υx,υy,υz), which are called the velocity components of P, in

the x, y and z directions respectively. They clearly depend on the directions of the

coordinate axes, but are independent of the position of the origin O. The total speed

at which P is travelling, i.e. the component of its velocity along a line instantaneously

parallel to the direction of motion, cannot depend on the directions of the axes. The

speed, sometimes called the magnitude of the velocity, can be shown to be equal to
√

υ2
x +υ2

y +υ2
z , which is a positive quantity even if some or all of υx, υy, υz are

negative.

We can specify the velocity of a particle in three dimensions just as precisely by

giving both its magnitude and its direction relative to any two of the coordinate axes

(for example, if we know the direction of motion of the fly, and its total speed, then its

velocity is fully determined). If the magnitude of the velocity is V , and the angles it

makes with the x- and y-axes respectively are θ and φ (Fig. 2.3), then the components

υx and υy are given by1

υx =V cosθ , υy =V cosφ .

The third component, υz, is then given by

υz =

√

V 2
−υ2

x −υ2
y =V

√

1− cos2 θ − cos2 φ ,

which is also equal to V cosψ , where ψ is the angle between the direction of the

velocity and the z-axis.

The velocity of a particle is an example of a physical quantity which has a cer-

tain magnitude and a certain direction. It exists independently of how we choose to

1 The reader is assumed to be familiar with the elementary properties of sines and cosines.
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Velocity 11

Fig. 2.4. These diagrams show the geometrical interpretation of Equation (2.3) for the addi-
tion of vectors, illustrated in two dimensions. The vectors x1 and x2, represented by the lines
OP1 and OP2, are added to form the vector x1 +x2, represented by the line OQ. The points O
and Q are the opposite corners of a parallelogram two sides of which are OP1 and OP2.

measure it, although the value of the magnitude depends on the units used to measure

it, and the specification of the direction depends on the orientation of the chosen coor-

dinate axes. Such a quantity is called a vector, and vectors will be represented in this

book by symbols in bold type. The velocity of a particle, for example, can then be

written by the single symbol v. The quantities (υx,υy,υz) are the components of the

vector v, and v can be regarded as equivalent to its three components taken together.

We therefore often write v = (υx,υy,υz).

Another example of a vector quantity is the position of the particle P (Fig. 2.1b),

which has magnitude equal to the length of OP (
√

x2 + y2 + z2) and direction given

by the cosines of the angles between OP and any two of OX, OY, OZ; alternatively,

its components are the coordinates (x, y, z) themselves. This position vector, say x, is

in fact a special type of vector, in that it does depend on the position of the origin O;

all other vectors describing physical quantities, like velocity, are independent of the

position of the origin. Vector notation, like the use of d/dt for ‘rate of change of’, is

just a convenient form of shorthand. From the definitions of υx, υy, υz as the rates of

change of x, y, z (i.e. υx = dx/dt, etc.), we can combine the two shorthand notations

in an obvious way as follows:

v =
dx

dt
. (2.2)

Velocity (a vector) is the rate of change of position (also a vector).

Vectors representing two quantities of the same type (for example, two velocities,

or two position vectors) are added together by adding their components. Let x1 =

(x1,y1,z1) and x2 = (x2,y2,z2) be two such vectors; then

x1 +x2 = (x1 + x2,y1 + y2,z1 + z2). (2.3)

To see this, consider the situation in two dimensions (Fig. 2.4).

We add the vector x1 = (x1,y1), representing the point P1, to the vector x2 =

(x2,y2), representing the point P2. For the geometric interpretation to remain

consistent, the resulting vector should represent the point Q, whose coordinates are
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12 2. Particle mechanics

(x1 + x2,y1 + y2). This is consistent with Equation (2.3). Alternatively, consider a

projectile which, when fired from a fixed point, has velocity v = (υx,υy,υz). Now

suppose that the point of firing is itself moving over the ground with velocity U in the

x-direction, velocity vector V = (U,0,0). Then the velocity of the projectile relative

to the ground is increased by an amount U in the x-direction, while its components in

the y- and z-directions are unchanged, i.e. v+V = (υx +U,υy,υz).

Acceleration

In the same way as the velocity of a particle is defined as the rate of change of position,

so the acceleration of the particle, defined as the rate of change of velocity, can also

be written down. For motion along a line, the acceleration is dυ/dt, which is the

same as the slope of the tangent of the graph of υ against t (Fig. 2.2b). It too has

three components, the rates of change of the three velocity components, and is also a

vector, say a:

a =
dv

dt
=

(

dυx

dt
,
dυy

dt
,
dυz

dt

)

. (2.4)

In the notation of calculus, if u = dx/dt, then du/dt can be written d2x/dt2, a useful

shorthand for the rate of change of the rate of change of x. Thus we can write

a =
d2x

dt2
=

(

d2x

dt2
,
d2y

dt2
,
d2z

dt2

)

. (2.5)

The units of acceleration must, for consistency, be metres per second squared (ms−2).

It is perhaps a little difficult to grasp the precise definition of acceleration as a

three-dimensional quantity. In one dimension, with the particle moving on a straight

line OX, it is fairly easy: if the velocity v is increasing at a given moment, then

the acceleration a = dv/dt is positive; if v is decreasing a is negative. If the par-

ticle is moving back towards O with a positive value of x, then v is negative, but

if it is at the same time slowing down, the acceleration a is positive. To make it

clearer, Fig. 2.5 shows graphs of x, υ and a against time t for a particle which

starts from rest at O, accelerates up to a uniform speed which is maintained for some

time, then decreases speed with constant negative acceleration until it has changed

direction and is returning to O with the same uniform speed. Finally, it is slowed

down and stopped at O again by the application of a positive acceleration. The di-

rection of the acceleration (the sign of a) is independent of the direction of motion

(the sign of u).

In two or three dimensions the direction of the acceleration is also independent of

the direction of the velocity. Whenever the velocity is changing, either in magnitude

or in direction, the particle experiences an acceleration. For example, suppose that a

particle is travelling in a circle with constant speed, like a ball twirled on the end of

a string or a satellite in its orbit round the Earth. In this case the magnitude of the
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