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Introduction

First-order logic meets game theory as soon as one considers sentences

with alternating quantifiers. Even the simplest alternating pattern illus-

trates this claim:

∀x∃y(x < y). (1.1)

We can convince an imaginary opponent that this sentence is true on

the natural numbers by pointing out that for every natural number m he

chooses for x, we can find a natural number n for y that is greater than

m. If, on the other hand, he were somehow able to produce a natural

number for which we could not find a greater one, then the sentence

would be false.

We can make a similar arrangement with our opponent if we play

on any other structure. For example, if we only consider the Boolean

values 0 and 1 ordered in their natural way, we would agree on a similar

protocol for testing the sentence, except that each party would pick 0 or

1 instead of any natural number.

It is natural to think of these protocols as games. Given a first-order

sentence such as (1.1), one player tries to verify the sentence by choosing

a value of the existentially quantified variable y, while the other player

attempts to falsify it by picking the value of the universally quantified

variable x. Throughout this book we will invite Eloise to play the role

of verifier and Abelard to play the role of falsifier.

We can formalize this game by drawing on the classical theory of

extensive games. In this framework, the game between Abelard and

Eloise that tests the truth of (1.1) is modeled as a two-stage game. First

Abelard picks an object m. Then Eloise observes which object Abelard

chose, and picks another object n. If m < n, we declare that Eloise has

won the game; otherwise we declare Abelard the winner. We notice that
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2 Introduction

Eloise’s ability to “see” the object m before she moves gives her an ad-

vantage. The reason we give Eloise this advantage is that the quantifier

∃y lies within the scope of ∀x. In other words, the value of y depends on

the value of x.

Hintikka used the game-theoretic interpretation of first-order logic to

emphasize the distinction between constitutive rules and strategic prin-

ciples [28, 29]. The former apply to individual moves, and determine

whether a particular move is correct or incorrect. In other words, con-

stitutive rules determine the set of all possible plays, i.e., the possible

sequences of moves that might arise during the game. In contrast, strate-

gic principles pertain to the observed behavior of the players over many

plays of the game. Choosing blindly is one thing, following a strategy is

another. A strategy is a rule that tells a particular player how to move

in every position where it is that player’s turn. A winning strategy is

one that ensures a win for its owner, regardless of the behavior of the

other player(s). Put another way, constitutive rules tell us how to play

the game, while strategic principles tell us how to play the game well.

When working with extensive games, it is essential to distinguish be-

tween winning a single play, and having a winning strategy for the game.

If we are trying to show that (1.1) holds, it is not enough to exhibit one

single play in which m = 4 and n = 7. Rather, to show (1.1) is true,

Eloise must have a strategy that produces an appropriate n for each

value of m her opponent might choose. For instance, to verify (1.1) is

true in the natural numbers, Eloise might use the winning strategy: if

Abelard picks m, choose n = m + 1. If we restrict the choice to only

Boolean values, however, Abelard has a winning strategy: he simply

picks the value 1. Thus (1.1) is true in the natural numbers, but false if

we restrict the choice to Boolean values.

To take an example from calculus, recall that a function f is contin-

uous if for every x in its domain, and every ε > 0, there exists a δ > 0

such that for all y,

|x − y| < δ implies |f(x) − f(y)| < ε.

This definition can be expressed using the quantifier pattern

∀x∀ε∃δ∀y(. . .), (1.2)

where the dots stand for an appropriate first-order formula. Using the

game-theoretic interpretation, (1.2) is true if for every x and ε chosen

by Abelard, Eloise can pick a value for δ such that for every y chosen

by Abelard it is the case that . . .
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Introduction 3

The key feature of game-theoretic semantics is that it relates a central

concept of logic (truth) to a central concept of game theory (winning

strategy). Once the connection between logic and games has been made,

logical principles such as bivalence and the law of excluded middle can

be explained using results from game theory. To give one example, the

principle of bivalence is an immediate consequence of the Gale-Stewart

theorem, which says that in every game of a certain kind there is a player

with a winning strategy.

Mathematical logicians have been using game-theoretic semantics im-

plicitly for almost a century. The Skolem form of a first-order sentence is

obtained by eliminating each existential quantifier, and substituting for

the existentially quantified variable a Skolem term f(y1, . . . , yn), where

f is a fresh function symbol and y1, . . . , yn are the variables upon which

the choice of the existentially quantified variable depends. A first-order

formula is true in a structure if and only if there are functions satisfying

its Skolem form.

For instance the Skolem form of (1.1) is ∀x
(

x < f(x)
)

. In the natural

numbers, we can take f to be defined by f(x) = x + 1, which shows

that (1.1) is true. Thus we see that Skolem functions encode Eloise’s

strategies.

Logic with imperfect information

The game-theoretic perspective allows one to consider extensions of first-

order logic that are not obvious otherwise. Independence-friendly logic,

the subject of the present volume, is one such extension.

An extensive game with imperfect information is one in which a player

may not “see” (“know”) all the moves leading up to the current position.

Imperfect information is a common phenomenon in card games such as

bridge and poker, in which each player knows only the cards on the table

and the cards she is holding in her hand.

In order to specify semantic games with imperfect information, the

syntax of first-order logic can be extended with slashed sets of variables

that indicate which past moves are unknown to the active player. For

example, in the independence-friendly sentence

∀x∀y
(

∃z/{y}
)

R(x, y, z), (1.3)

the notation /{y} indicates that Eloise is not allowed to see the value of

y when choosing the value of z.
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4 Introduction

Imperfect information does not prevent Eloise from performing any

particular action she could have taken in the game for the first-order

variant of (1.3):

∀x∀y∃zR(x, y, z). (1.4)

Instead, restricting the information available to the player prevents them

from following certain strategies. For instance, in the game for (1.4)

played on the natural numbers, Eloise may follow the strategy that takes

z = x + y. However, this strategy is not available to her in the game for

(1.3).

The restriction on Eloise’s possible strategies is encoded in the Skolem

form of each sentence. For instance, the Skolem form of (1.3) is

∀x∀yR
(

x, y, f(x)
)

,

whereas the Skolem form of (1.4) is

∀x∀yR
(

x, y, f(x, y)
)

.

The set under the slash in
(

∃z/{y}
)

indicates that the quantifier is

independent of the value of y, even though it occurs in the scope of ∀y.

Returning to calculus, a function f is uniformly continuous if for every

x in its domain and every ε > 0, there exists a δ > 0 independent of x

such that for all y,

|x − y| < δ implies |f(x) − f(y)| < ε.

The definition of uniform continuity can be captured by an independence-

friendly sentence of the form

∀x∀ε
(

∃δ/{x}
)

∀y(. . .),

or, equivalently, by a first-order sentence of the form

∀ε∃δ∀x∀y(. . .).

Not all independence-friendly sentences are equivalent to a first-order

sentence, however. Independence-friendly (IF) logic is related to an ear-

lier attempt to generalize first-order logic made by Henkin [25], who

introduced a two-dimensional notation called branching quantifiers. For

instance, in the branching-quantifier sentence

(

∀x ∃y

∀z ∃w

)

R(x, y, z, w) (1.5)
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the value of y depends on x, while the value of w depends on z. The

Skolem form of the above sentence is given by:

∀x∀zR
(

x, f(x), z, g(z)
)

.

We can obtain the same Skolem form from the IF sentence

∀x∃y∀z
(

∃w/{x, y}
)

R(x, y, z, w). (1.6)

Ehrenfeucht showed that sentences such as (1.5) can define proper-

ties that are not expressible in first-order logic [25]. Since branching-

quantifier sentences are translatable into IF sentences, IF languages are

also more expressive than first-order languages. In fact, IF logic has the

same expressive power as existential second-order logic.

The additional expressive power of independence-friendly logic was

the main reason why Hintikka advocated its superiority over first-order

logic for the foundations of mathematics [28].

Several familiar properties of first-order logic are lost when passing

from perfect to imperfect information. They will be discussed in due

time. Here we shall briefly consider two such properties. It will be seen

that the Gale-Stewart theorem fails for extensive games with imperfect

information, and thus there is no guarantee that every IF sentence is

either true or false.

One such notorious IF sentence is

∀x
(

∃y/{x}
)

x = y. (1.7)

Even on a small domain like the set of Boolean values, Eloise has no way

to consistently replicate the choice of Abelard if she is not allowed to

see it. Abelard does not have a winning strategy either, though, because

Eloise may guess correctly.

Thus, allowing semantic games of imperfect information introduces

a third value in addition to true and false. It has been shown that the

propositional logic underlying IF logic is precisely Kleene’s strong, three-

valued logic [31, 34].

Another familiar property of first-order logic that is often taken for

granted is that whether an assignment satisfies a formula depends only

on the values the assignment gives to the free variables of the formula.

In contrast, the meaning of an IF formula can be affected by values

assigned to variables that do not occur in the formula at all. This is

exemplified by sentences such as

∀x∃z
(

∃y/{x}
)

x = y. (1.8)
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In the semantic game for the above sentence, Eloise can circumvent the

informational restrictions imposed on the quantifier
(

∃y/{x}
)

by storing

the value of the hidden variable x in the variable z. Thus, the subformula
(

∃y/{x}
)

x = y has a certain meaning in the context of sentences like

(1.7), and a different meaning in the context of sentences like (1.8), where

variables other than x may have values.

The failure to properly account for the context-sensitive meanings of

IF formulas has resulted in numerous errors appearing in the literature.

We shall try to give an accessible and rigorous introduction to the topic.

Traditionally, logicians have been mostly interested in semantic games

for which a winning strategy exists. Game theorists, in contrast, have

focused more on games for which there is no winning strategy. The most

common way to analyze an undetermined game is to allow the players

to randomize their strategies, and then calculate the players’ expected

payoff.

We shall apply the same approach to undetermined IF sentences.

While neither player has a winning strategy for the IF sentence (1.7),

in a model with exactly two elements, the existential player is as likely

to choose the correct element as not, so it seems intuitive to assign the

sentence the truth value 1/2. In a structure with n elements, the prob-

ability that the existential player will guess the correct element drops

to 1/n. We will use game-theoretic notions such as mixed strategies and

equilibria to provide a solid foundation for such intuitions.

Chapter 2 contains a short primer on game theory that includes all the

material necessary to understand the remainder of the book. Chapter 3

presents first-order logic from the game-theoretic perspective. We prove

the standard logical equivalences using only the game-theoretic frame-

work, and explore the relationship between semantic games, Skolem

functions, and Tarski’s classical semantics. Chapter 4 introduces the

syntax and semantics of IF logic. Chapter 5 investigates the basic prop-

erties of IF logic. We prove independence-friendly analogues to each of

the equivalences discussed in Chapter 3, including a prenex normal form

theorem. IF logic also shares many of the nice model-theoretic properties

of first-order logic. In Chapter 6, we show that IF logic has the same

expressive power as existential second-order logic, and the perfect-recall

fragment of IF logic has the same expressive power as first-order logic.

Chapter 7 analyzes IF formulas whose semantic game is undetermined

in terms of mixed strategies and equilibria. In Chapter 8 we discuss the

proof that no compositional semantics for IF logic can define its sat-
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isfaction relation in terms of single assignments. We also introduce a

fragment of IF logic called IF modal logic.

Although it is known that IF logic cannot have a complete deduction

system, there have been repeated calls for the development of some kind

of proof calculus. The logical equivalences and entailments presented in

Chapter 5 form the most comprehensive system to date. They are based

on the work of the first author [39, 40], as well as Caicedo, Dechesne,

and Janssen [9].

The IF equivalences in Chapter 5 have already proved their usefulness

by simplifying the proof of the perfect recall theorem found in Chapter 6,

which is due to the third author [52]. The analogue of Burgess’ theorem

for the perfect-recall fragment of IF logic is due to the first author. The

results presented in Chapter 7, due to the third author, generalize results

in [52] and extend results in [54].
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Game theory

According to A Course in Game Theory, “a game is a description of

strategic interaction that includes the constraints on the actions that

the players can take and the players’ interests, but does not specify the

actions that the players do take” [45, p. 2]. Classical game theory makes

a distinction between strategic and extensive games. In a strategic game

each player moves only once, and all the players move simultaneously.

Strategic games model situations in which each player must decide his

or her course of action once and for all, without being informed of the

decisions of the other players. In an extensive game, the players take

turns making their moves one after the other. Hence a player may con-

sider what has already happened during the course of the game when

deciding how to move.

We will use both strategic and extensive games in this book, but we

consider extensive games first because how to determine whether a first-

order sentence is true or false in a given structure can be nicely modeled

by an extensive game. It is not necessary to finish the present chapter

before proceeding. After reading the section on extensive games, you

may skip ahead to Chapter 3. The material on strategic games will not

be needed until Chapter 7.

2.1 Extensive games

In an extensive game, the players may or may not be fully aware of the

moves made by themselves or their opponents leading up to the current

position. When a player knows everything that has happened in the

game up till now, we say that he or she has perfect information. In the

present section we focus on extensive games in which the players always
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10 Game theory

have perfect information, drawing heavily on the framework found in

Osborne and Rubinstein’s classic textbook [45].

2.1.1 Extensive games with perfect information

Definition 2.1 An extensive game form with perfect information has

the following components:

• N , a set of players.

• H, a set of finite sequences called histories or plays.

– If (a1, . . . , aℓ) ∈ H and (a1, . . . , an) ∈ H, then for all ℓ < m < n we

must have (a1, . . . , am) ∈ H. We call (a1, . . . , aℓ) an initial segment

and (a1, . . . , an) an extension of (a1, . . . , am).

– A sequence (a1, . . . , am) ∈ H is called an initial history (or minimal

play) if it has no initial segments in H, and a terminal history (or

maximal play) if it has no extensions in H. We require every history

to be either terminal or an initial segment of a terminal history. The

set of terminal histories is denoted Z.

• P : (H − Z) → N , the player function, which assigns a player p ∈ N

to each nonterminal history.

– We imagine that the transition from a nonterminal history h =

(a1, . . . , am) to one of its successors h⌢a = (a1, . . . , am, a) in H is

caused by an action. We will identify actions with the final member

of the successor.

– The player function indicates whose turn it is to move. For every

nonterminal history h = (a1, . . . , am), the player P (h) chooses an

action a′ from the set

A(h) =
{

a : (a1, . . . , am, a) ∈ H
}

,

and play proceeds from h′ = (a1, . . . , am, a′).

An extensive game with perfect information has the above components,

plus:

• up : Z → R, a utility function (also called a payoff function) for each

player p ∈ N . ⊣

Our definition differs from [45, Definition 89.1] in three respects. First,

we do not require initial histories to be empty. Second, we only consider

games that end after a finite number of moves. Third, we use utility

functions to encode the players’ preferences rather than working with
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2.1 Extensive games 11

preference relations directly. We assume that players always prefer to

receive higher payoffs.

I

a

II

b

c d

Figure 2.1 An extensive game form with perfect information

When drawing extensive game forms, we label decision points with the

active player, and edges with actions. Filled-in nodes represent terminal

histories. Figure 2.1 shows the extensive form of a simple two-player

game. First, player I chooses between two actions a and b. If she chooses

a the game ends. If she chooses b, player II chooses between actions c

and d. To obtain an extensive game with perfect information, it suffices

to label the terminal nodes with payoffs as shown in Figure 2.2.

I

uI(a) = 1
uII(a) = 1

a

II

b

uI(b, c) = 2
uII(b, c) = 0

c

uI(b, d) = 0
uII(b, d) = 2

d

Figure 2.2 An extensive game with perfect information

Notice that the extensive game form depicted in Figure 2.1 has a tree-

like structure. A forest is a partially ordered set P = (P ;<) such that

for all x ∈ P , the set { y ∈ P : y < x } is well ordered. The height of x

is just the order type of { y ∈ P : y < x }. A minimal element of a forest

has height 0 and is called a root ; a maximal element is called a leaf .

The height of an entire forest is the least ordinal greater than the height
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12 Game theory

of every element in the forest. A branch is a maximal linearly ordered

subset of a forest. A forest with a single root is called a tree.

For any two histories h and h′ of an extensive game form, let h < h′ if

and only if h is an initial segment of h′. In the game-theoretic literature,

it is traditional to draw extensive game forms so that initial histories

are at the top, and play proceeds down the branches. An extensive game

form has finite horizon if the height of its set of histories is finite. All of

the games discussed in this book have finite horizon.

Definition 2.2 A two-player extensive game is strictly competitive if

the players have no incentive to cooperate, that is, if for all h, h′ ∈ Z,

uI(h) ≥ uI(h
′) iff uII(h

′) ≥ uII(h).

A constant-sum game is one in which the sum of the players’ payoffs is

constant, i.e., there exists a c ∈ R such that for every terminal history h

we have uI(h)+uII(h) = c. When c = 0 the game is called zero sum. ⊣

I

uI(a) = 1
uII(a) = 1

a

II

b

uI(b, c) = 2
uII(b, c) = 0

c

uI(b, d) = 1
uII(b, d) = 2

d

Figure 2.3 A strictly competitive game

In a constant-sum game, any gain for one player is balanced by an off-

setting loss for the other. Thus the interests of the players are diamet-

rically opposed. Every constant-sum game is strictly competitive, but

not vice versa. For example, the game depicted in Figure 2.3 is strictly

competitive, but not constant sum. In a zero-sum game uII(h) = −uI(h)

for every terminal history h.

Definition 2.3 If the only possible payoffs are 1 and 0, we say that

player p wins a terminal history h if up(h) = 1, and loses if up(h) = 0.

An extensive game is win-lose if exactly one player wins each terminal

history, in which case we can replace the players’ utility functions with
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