Probability on Graphs

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss.

Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. Schramm–Löwner evolutions (SLE) arise in various contexts. The choice of topics is strongly motivated by modern applications and focuses on areas that merit further research. Special features include a simple account of Smirnov’s proof of Cardy’s formula for critical percolation, and a fairly full account of the theory of influence and sharp-thresholds.

Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Geoffrey Grimmett is Professor of Mathematical Statistics in the Statistical Laboratory at the University of Cambridge.
IMS Textbooks give introductory accounts of topics of current concern suitable for advanced courses at master’s level, for doctoral students and for individual study. They are typically shorter than a fully developed textbook, often arising from material created for a topical course. Lengths of 100–290 pages are envisaged. The books typically contain exercises.
Probability on Graphs
Random Processes on Graphs and Lattices

GEOFFREY GRIMMETT
Statistical Laboratory
University of Cambridge
Contents

Preface ix

1 Random walks on graphs

1.1 Random walks and reversible Markov chains 1
1.2 Electrical networks 3
1.3 Flows and energy 8
1.4 Recurrence and resistance 11
1.5 Pólya’s theorem 14
1.6 Graph theory 16
1.7 Exercises 18

2 Uniform spanning tree

2.1 Definition 21
2.2 Wilson’s algorithm 23
2.3 Weak limits on lattices 28
2.4 Uniform forest 31
2.5 Schramm–Löwner evolutions 32
2.6 Exercises 37

3 Percolation and self-avoiding walk

3.1 Percolation and phase transition 39
3.2 Self-avoiding walks 42
3.3 Coupled percolation 45
3.4 Oriented percolation 45
3.5 Exercises 48

4 Association and influence

4.1 Holley inequality 50
4.2 FKG inequality 53
4.3 BK inequality 54
4.4 Hoeffding inequality 56
Contents

4.5 Influence for product measures 58
4.6 Proofs of influence theorems 63
4.7 Russo’s formula and sharp thresholds 75
4.8 Exercises 78

5 **Further percolation**
5.1 Subcritical phase 81
5.2 Supercritical phase 86
5.3 Uniqueness of the infinite cluster 92
5.4 Phase transition 95
5.5 Open paths in annuli 99
5.6 The critical probability in two dimensions 103
5.7 Cardy’s formula 110
5.8 The critical probability via the sharp-threshold theorem 121
5.9 Exercises 125

6 **Contact process**
6.1 Stochastic epidemics 127
6.2 Coupling and duality 128
6.3 Invariant measures and percolation 131
6.4 The critical value 133
6.5 The contact model on a tree 135
6.6 Space–time percolation 138
6.7 Exercises 141

7 **Gibbs states**
7.1 Dependency graphs 142
7.2 Markov fields and Gibbs states 144
7.3 Ising and Potts models 148
7.4 Exercises 150

8 **Random-cluster model**
8.1 The random-cluster and Ising/Potts models 152
8.2 Basic properties 155
8.3 Infinite-volume limits and phase transition 156
8.4 Open problems 160
8.5 In two dimensions 163
8.6 Random even graphs 168
8.7 Exercises 171
Contents

9 Quantum Ising model 175
 9.1 The model 175
 9.2 Continuum random-cluster model 176
 9.3 Quantum Ising via random-cluster 179
 9.4 Long-range order 184
 9.5 Entanglement in one dimension 185
 9.6 Exercises 189

10 Interacting particle systems 190
 10.1 Introductory remarks 190
 10.2 Contact model 192
 10.3 Voter model 193
 10.4 Exclusion model 196
 10.5 Stochastic Ising model 200
 10.6 Exercises 203

11 Random graphs 205
 11.1 Erdős–Rényi graphs 205
 11.2 Giant component 206
 11.3 Independence and colouring 211
 11.4 Exercises 217

12 Lorentz gas 219
 12.1 Lorentz model 219
 12.2 The square Lorentz gas 220
 12.3 In the plane 223
 12.4 Exercises 224

References 226
Index 243
Preface

Within the menagerie of objects studied in contemporary probability theory, there are a number of related animals that have attracted great interest amongst probabilists and physicists in recent years. The inspiration for many of these objects comes from physics, but the mathematical subject has taken on a life of its own, and many beautiful constructions have emerged. The overall target of these notes is to identify some of these topics, and to develop their basic theory at a level suitable for mathematics graduates.

If the two principal characters in these notes are random walk and percolation, they are only part of the rich theory of uniform spanning trees, self-avoiding walks, random networks, models for ferromagnetism and the spread of disease, and motion in random environments. This is an area that has attracted many fine scientists, by virtue, perhaps, of its special mixture of modelling and problem-solving. There remain many open problems. It is the experience of the author that these may be explained successfully to a graduate audience open to inspiration and provocation.

The material described here may be used for personal study, and as the bases of lecture courses of between 24 and 48 hours duration. Little is assumed about the mathematical background of the audience beyond some basic probability theory, but students should be willing to get their hands dirty if they are to profit. Care should be taken in the setting of examinations, since problems can be unexpectedly difficult. Successful examinations may be designed, and some help is offered through the inclusion of exercises at the ends of chapters. As an alternative to a conventional examination, students may be asked to deliver presentations on aspects and extensions of the topics studied.

Chapter 1 is devoted to the relationship between random walks (on graphs) and electrical networks. This leads to the Thomson and Rayleigh principles, and thence to a proof of Pólya’s theorem. In Chapter 2, we describe Wilson’s algorithm for constructing a uniform spanning tree (UST), and we discuss boundary conditions and weak limits for UST on a lattice. This chapter includes a brief introduction to Schramm–Löwner evolutions (SLE).
Preface

Percolation theory appears first in Chapter 3, together with a short introduction to self-avoiding walks. Correlation inequalities and other general techniques are described in Chapter 4. A special feature of this part of the book is a fairly full treatment of influence and sharp-threshold theorems for product measures, and more generally for monotone measures.

We return to the basic theory of percolation in Chapter 5, including a full account of Smirnov’s proof of Cardy’s formula. This is followed in Chapter 6 by a study of the contact model on lattices and trees.

Chapter 7 begins with a proof of the equivalence of Gibbs states and Markov fields, and continues with an introduction to the Ising and Potts models. Chapter 8 is an account of the random-cluster model. The quantum Ising model features in the next chapter, particularly through its relationship to a continuum random-cluster model, and the consequent analysis using stochastic geometry.

Interacting particle systems form the basis of Chapter 10. This is a large field in its own right, and little is done here beyond introductions to the contact, voter, exclusion models, and the stochastic Ising model. Chapter 11 is devoted to random graphs of Erdős–Rényi type. There are accounts of the giant cluster, and of the chromatic number via an application of Hoeffding’s inequality for the tail of a martingale.

The final Chapter 12 contains one of the most notorious open problems in stochastic geometry, namely the Lorentz model (or Ehrenfest wind–tree model) on the square lattice.

These notes are based in part on courses given by the author within Part 3 of the Mathematical Tripos at Cambridge University over a period of several years. They have been prepared in this form as background material for lecture courses presented to outstanding audiences of students and professors at the 2008 PIMS–UBC Summer School in Probability, and during the programme on Statistical Mechanics at the Institut Henri Poincaré, Paris, during the last quarter of 2008. They were written in part during a visit to the Mathematics Department at UCLA (with partial support from NSF grant DMS-0301795), to which the author expresses his gratitude for the warm welcome received there, and in part during programmes at the Isaac Newton Institute and the Institut Henri Poincaré–Centre Emile Borel.

Throughout this work, pointers are included to more extensive accounts of the topics covered. The selection of references is intended to be useful rather than comprehensive.

The author thanks four artists for permission to include their work: Tom Kennedy (Fig. 2.1), Oded Schramm (Figs 2.2–2.4), Raphaël Cerf (Fig. 5.3), and Julien Dubédat (Fig. 5.18). The section on influence has benefited
Preface

from conversations with Rob van den Berg and Tom Liggett. Stanislav Smirnov and Wendelin Werner have consented to the inclusion of some of their neat arguments, hitherto unpublished. Several readers have proposed suggestions and corrections. Thank you, everyone!

G. R. G.
Cambridge
April 2010