
PART I

BACKGROUND

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


1

A question of semantics

The goal of this chapter is to give the reader a glimpse of the applications
and problem areas that have motivated and to this day continue to inspire
research in the important area of computer science known as programming
language semantics.

1.1 Semantics is the study of meaning

Programming language semantics is the study of mathematical models of
and methods for describing and reasoning about the behaviour of programs.

The word semantics has Greek roots1 and was first used in linguistics.
Here, one distinguishes among syntax, the study of the structure of lan-
guages, semantics, the study of meaning, and pragmatics, the study of the
use of language.

In computer science we make a similar distinction between syntax and se-
mantics. The languages that we are interested in are programming languages
in a very general sense. The ‘meaning’ of a program is its behaviour, and
for this reason programming language semantics is the part of programming
language theory devoted to the study of program behaviour.

Programming language semantics is concerned only with purely internal
aspects of program behaviour, namely what happens within a running pro-
gram. Program semantics does not claim to be able to address other aspects
of program behaviour – e.g. whether or not a program is user-friendly or
useful.

In this book, when we speak of semantics, we think of formal semantics,

1 The Greek word (transliterated) is semantikós, meaning ‘significant’. The English word
‘semantics’ is a singular form, as are ‘physics’, ‘mathematics’ and other words that have
similar Greek roots.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


4 A question of semantics

Figure 1.1 Alfred Tarski

understood as an approach to semantics that relies on precise mathematical
definitions.

Formal semantics arose in the early twentieth century in the context of
mathematical logic. An early goal of mathematical logic was to provide a
precise mathematical description of the language of mathematics, including
the notion of truth. An important contributor in this area was the logician
Alfred Tarski (Figure 1.1) (Tarski, 1935).

Many of the first insights and a lot of the fundamental terminology used in
programming language semantics can be traced back to the work of Tarski.
For instance, the important notion of compositionality – that the meaning
of a composite language term should be defined using the meanings of its
immediate constituents – is due to him. So is the insight that we need to
use another language, a metalanguage, to define the semantics of our target
language.

1.2 Examples from the history of programming languages

The area of programming language semantics came into existence in the
late 1960s. It was born of the many problems that programming language
designers and implementors encountered when trying to describe various
constructs in both new and existing programming language.

The general conclusion that emerged was that an informal semantics,
however precise it may seem, is not sufficient when it comes to defining the
behaviour of programs.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


1.2 Examples from the history of programming languages 5

1.2.1 ALGOL 60

The programming language ALGOL 60 was first documented in a paper from
1960 (Backus and Naur, 1960), now often referred to simply as ‘the ALGOL
60 report’. ALGOL 60 was in many ways a landmark in the evolution of
programming languages.

Firstly, the language was the result of very careful work by a committee
of prominent researchers, including John Backus, who was the creator of
FORTRAN, John McCarthy, the creator of Lisp, and Peter Naur, who be-
came the first Danish professor of computer science. Later in their careers,
Backus, McCarthy and Naur all received the ACM Turing Award for their
work on programming languages.

Secondly, ALGOL 60 inspired a great many subsequent languages, among
them Pascal and Modula.

Thirdly, ALGOL 60 was the first programming language whose syntax was
defined formally. The notation used was a variant of context-free grammars,
later known as Backus–Naur Normal Form (BNF).

However, as far as the semantics of ALGOL 60 is concerned, Backus and
his colleages had to rely on very detailed descriptions in English, since there
were as yet no general mathematical theories of program behaviour. It turned
out to be the case that even a group of outstanding researchers (who for
the most part were mathematicians) could not avoid being imprecise, when
they did not have access to a formalized mathematical theory of program
behaviour. In 1963 the ALGOL 60 committee therefore released a revised
version of the ALGOL 60 report (Backus and Naur, 1963) in which they
tried to resolve the ambiguities and correct the mistakes that had been
found since the publication of the original ALGOL 60 report.

However, this was by no means the end of the story. In 1967, Donald E.
Knuth published a paper (Knuth, 1967) in which he pointed out a number
of problems that still existed in ALGOL 60.

One such problem had to do with global variables in procedures. Figure 1.2
illustrates the nature of the problem. The procedure awkward is a procedure
returning an integer value.

integer procedure awkward
begin comment x is a global variable
x := x+1
awkward := 3

end awkward

Figure 1.2 An ALGOL 60 procedure. What is its intended behaviour?

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


6 A question of semantics

The procedure awkward manipulates the value of a global variable and
therefore has a side effect. However, the ALGOL 60 report does not explain
whether or not side effects are allowed in procedures. Because of this, there
is also no explanation of how arithmetic expressions should be evaluated if
they contain side effects.

Let us consider a global variable x whose value is 5 and assume that we
now want to find the value of the expression x+awkward. Should we evaluate
x before or after we evaluate awkward? If we evaluate x first, the value of
the expression will be 8; should we evaluate x after having called awkward,
we get the value 9!

One consequence of Knuth’s paper was that the ALGOL 60 committee
went back to the drawing board to remove the ambiguities. The main reason
why it took so long to discover these problems was that the language de-
signers had no precise, mathematical criterion for checking whether or not
all aspects of the language had been defined.

1.2.2 Pascal

Pascal, a descendant of the Algol family, was created by Niklaus Wirth and
first documented in a book written with Kathleen Jensen (Jensen and Wirth,
1975). Ever since then, Pascal has been a common introductory language in
computer science degree programmes around the world.

Even though great care was taken in the exposition of the language fea-
tures, Pascal also suffers from the problems associated with an informal
semantics. In particular, there are problems with explaining scoping rules –
in fact, the scoping rules are barely explained in the book. There is mention
of global variables; however, nowhere in the text is it explained what a global
variable is, let alone what its scope should be. Nor are there any rules that
specify that a variable must be declared before it is used!

All existing implementations of Pascal assume this (except for pointer
variables), but the declaration-before-use convention is not part of the orig-
inal definition of the language.

1.3 Different approaches to program semantics

The development of a mathematical theory of program semantics has been
motivated by examples such as the ones given above. There are several ways
of providing such a mathematical theory, and they turn out to be related.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


1.3 Different approaches to program semantics 7

Figure 1.3 Dana Scott (left) and Christopher Strachey (right)

Denotational semantics was the first mathematical account of program be-
haviour; it arose in the late 1960s (Strachey, 1966, 1967; Scott and Strachey,
1971) and was pioneered by Dana Scott and Christopher Strachey (Figure
1.3), who at the time were both working at Oxford University.

In denotational semantics, the behaviour of a program is described by
defining a function that assigns meaning to every construct in the language.
The meaning of a language construct is called its denotation. Typically, for
an imperative program, the denotation will be a state transformation, which
is a function that describes how the final values of the variables in a program
are found from their initial values.

Structural operational semantics – the main topic of this book – came into
existence around 1980 and is due to Gordon Plotkin (Figure 1.4), who gave
the first account of his ideas in a set of lecture notes written during his
sabbatical at Århus University in 1980 (Plotkin, 1981). An important early
contribution is that of Robin Milner (Figure 1.5), who used Plotkin’s ap-
proach to give a labelled semantics to the process calculus CCS (Calculus
of Communication Systems) (Milner, 1980). Plotkin (2004) gives a detailed
account of the origins and early history of the area.

In structural operational semantics one specifies the behaviour of a pro-
gram by defining a transition system whose transition relation describes
the evaluation steps of a program. One of the underlying motivations for
this approach was that it is possible to give a simple account of concurrent
programs; previous attempts to give a semantic description of even simple

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


8 A question of semantics

Figure 1.4 Gordon Plotkin

parallel programming languages had used denotational semantics and had
turned out to be quite complicated.

A central insight of this approach, and one to which we shall return re-
peatedly throughout this book, is that one can describe the evaluation steps
of a syntactic entity (such as a program) in a structural fashion, that is, by
means of an inductive definition based on the abstract syntax.

Axiomatic semantics is due to Tony Hoare (Hoare, 1969; Apt, 1981) (Figure
1.6) and, like denotational semantics, it is a product of the late 1960s. Here
one describes a language construct by means of mathematical logic. More
precisely, one defines a set of rules that describe the assertions that must
hold before and after the language construct has been executed.

Algebraic semantics is related to denotational semantics and describes the
behaviour of a program using universal algebra (Guessarian, 1981; Goguen
and Malcolm, 1996). The members of the research collective behind the OBJ
specification language, with Joseph Goguen (Figure 1.7) as a prominent con-
tributor, have been important figures in the development of this approach.

These four approaches to programming language semantics are not rivals.
Rather, they complement each other. Some approaches are more suitable
than others in certain situations. For instance, it is much easier to describe

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


1.3 Different approaches to program semantics 9

Figure 1.5 Robin Milner

Figure 1.6 Tony Hoare

parallel and nondeterministic program behaviour using structural opera-
tional semantics than by means of denotational semantics.

There are many precise mathematical results relating the four approaches.
In this book we give an example of such a result in Chapter 15, where we

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


10 A question of semantics

Figure 1.7 Joseph Goguen

show that the structural operational semantics and the denotational seman-
tics of the Bims language are equivalent in a very precise sense.

1.4 Applications of program semantics

The area of program semantics has turned out to be extremely useful in
situations where it is important to give a precise description of the behaviour
of a program. Here are some prominent examples.

1.4.1 Standards for implementation

The formal semantics of a programming language is not meant as an al-
ternative to the informal descriptions of programming constructs found in
introductory programming textbooks. A formal semantics serves a very dif-
ferent purpose, namely to act as a yardstick that any implementation must
conform to.

The examples mentioned in Section 1.2 all helped make computer scien-
tists aware of the fact that only a precise semantic definition can provide
an exhaustive and implementation-independent account of all aspects of a
programming language. Such an account is particularly necessary if one is
a ‘superuser’ of the language whose task is to implement an interpreter
or a compiler or, in general, to create a language-dependent programming

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org


1.4 Applications of program semantics 11

environment. A prominent example of a formal semantic definition is the
operational semantics of Standard ML (Milner et al., 1997), due to Robin
Milner, Robert Harper, David MacQueen and Mads Tofte. Later, a lot of
effort went into providing a suitable formal semantics of Java and C#; there
are now denotational as well as operational semantics of Java (Alves-Foss,
1999) and C# (Börger et al., 2005).

1.4.2 Generating interpreters and compilers

A precise definition of the semantics of a programming language will specify
how a program in the language is to be executed. As a consequence, it is a
natural step to construct a compiler/interpreter generator which, when given
a definition of the semantics of some language L, will generate a compiler
(or interpreter) for L.

Such compiler/interpreter generators have existed for many years. The
first such systems were based on denotational semantics (Mosses, 1976; Paul-
son, 1982); later systems have also used variants of structural operational
semantics (Pettersson, 1999; Diehl, 2000; Chalub and Braga, 2007). In gen-
eral, the idea is not to replace standard compiler implementations as such
but to provide a tool for the language developer.

In Appendix B of this book we give a number of small examples that
describe how one can create an interpreter directly from a structural oper-
ational semantics.

1.4.3 Verification and debugging – lessons learned

Many software systems today are safety-critical in the sense that an execu-
tion error may have very unpleasant and wide-ranging consequences. One
would of course like to be able to predict such events to prevent them from
ever occurring.

In the natural sciences the use of mathematical models allows scientists
and engineers to predict many events with great precision. Engineers use
the mathematically based theories from physics to design bridges in such a
way that these do not collapse and meteorologists use mathematical models
of the atmosphere to make weather forecasts.

Similarly, we would like to use mathematically based theories to reason in
a precise manner about the behaviour of programs. Programming language
semantics makes this possible.

The following examples demonstrate what can happen if safety-critical
software is not subjected to analyses of this kind.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-14709-5 - Transitions and Trees: An Introduction to Structural Operational Semantics
Hans Huttel
Excerpt
More information

http://www.cambridge.org/9780521147095
http://www.cambridge.org
http://www.cambridge.org

