Index

aberration, 78–9, 197
adjusting column width of spreadsheet, xvii
advance of Moon’s perigee, 163
age of Moon (phase), 171–2, 197, 202
algebraic notation, xi
altitude, 34, 197
angle between two objects, 66
Anno Domini (AD), 8
annual equation, 162, 197
annular eclipse, 181, 199
anomalistic month, 201
anomalistic year, 204
anomaly, 197
eccentric anomaly, 107, 108, 143, 197
mean anomaly, 103, 107, 121, 122, 143, 164, 197
true anomaly, 103, 107, 108, 121, 122, 144, 197
apastron, 197
aphelion, 102, 197
apogee, 103, 104, 197
apparent brightness of a planet, 140–1
apparent orbit of
Moon, 162, 163
Sun, 103–4, 163
apparent sidereal time, 203
argument of perihelion, 120, 143
Aries, first point of, 35, 36, 37, 199
ascending node, 120, 201
astronomical calendar, 194–7
astronomical latitude, 83, 197
astronomical twilight, 114–15, 203
astronomical unit, 136, 197
ATAN2, spreadsheet function, 48, 50
atmospheric extinction, 99, 199
atmospheric refraction, 80–2, 197
effect on altitude, 80, 81
effect on hour angle, 81
effect on right ascension and declination, 81
effect on rising and setting, 68, 81
atomic time, 16, 30, 203
autumnal equinox, 23, 199
azimuth, 34, 36, 197
at rising and setting, 67–71
BASIC, programming language, xix
before the Common Era (BCE), 8
before Christ (BC), 8
Besselian year, 204
binary star, 197
binary-star orbits, 155–9
orbital elements of, 157
bright limb, position-angle of
for Moon, 175
for planet, 138–9
brightness of a planet, 140–1
British summer time (BST), 17, 203
built-in spreadsheet functions, 4
Calc, spreadsheet software, xiii, xix
calculations, using spreadsheets for, xv
calculator, choosing, xi
calendar, 2, 197
astronomical, 194–7
Gregorian, 2, 197
Julian, 2, 197
Carrington rotation number, 94
celestial sphere, 34, 198
cell label, of spreadsheet, xiv
cell, of spreadsheet, xiv
centre, equation of the, 104, 121, 199
error incurred by, 134
choosing a calculator, xi
Christian Era (CE), 8
circumpolar stars, 68, 69, 198
civil twilight, 203
civil year, 2
colongitude, Sun’s selenographic, 97
colouring of starlight by the atmosphere, 99
column, of spreadsheet, xiv
column width, adjusting in spreadsheet, xvii
comet, 143–54, 198
calculating the position of, 143–54
orbital elements of, 145
parabolic orbit of, 151–4, 201
Common Era (CE), 8
companion (of binary star), 155, 198
CONCATENATE, spreadsheet function, 180
conjunction, 198
coordinate systems, 33–99, 198
Index

converting between one system and another, 42

ecliptic, 37, 198

ecliptic to equatorial conversion, 51–3

equatorial, 35–6, 198
equatorial to ecliptic conversion, 55
equatorial to galactic conversion, 56–8
equatorial to horizon conversion, 47–9
galactic, 38, 198
galactic to equatorial conversion, 58–9
generalised coordinate conversions, 42, 60–5

heliographic, 88–92, 198

horizon, 34, 198
horizon to equatorial conversion, 49–51

selenographic, 95–8, 198

coordinated universal time (UTC), 198

corrections to Moon’s orbit, 162, 164, 165

culmination, 36, 198
date to days conversion, 6

routine for, 8

via Julian date, 10
day, 198

length of, 23, 116

name of day of week from Julian date, 12–13

sidereal day, 23, 198

solar day, 22, 198
daylight saving time, 17, 203
days

in month, 2, 162, 163, 201

in year, 2, 204
to beginning of month, 7
to beginning of year, 7
decimation, 35, 36, 198
effect of aberration on, 78–9
effect of precession on, 71–6
effect of refraction on, 81
degrees (decimal)

conversion to degrees, minutes and seconds, 39

conversion to radians, 109, 202

DEGREES, spreadsheet function, 47
descending node, 120, 201
divisor, 3
double precision, xii
draconic month, 163, 201
dynamical time, 16, 30, 198, 203

Earth

as a cosmic clock, 30

as a gyroscope, 116
distance from the Sun, 110

figure of, 83–4, 199

orbital elements of, 123

radius of, 85

radius of shadow of, 184, 186

rotation axis of, 35, 71

earthshine, 171, 198

Easter, date of, 3–5

eccentric anomaly, 107, 108, 143, 197

eccentricity, 102, 198
eclipse, 181–93, 198, 199

annular, 181, 199
diagram, 185, 187, 192
duration of, 183

lunar, 181, 198
calculation of, 184–9

magnitude of, 188

number in year, 183

partial, 181, 198, 202

penumbral, 181, 202

phase of, 202

prediction from astronomical calendar, 194

rules of, 183

solar, 181, 198
total, 181, 198
described in detail, 181, 192–7

ecliptic

latitude, 37, 200

longitude, 37, 200

obliquity of, 37, 51, 201

pole of, 37, 202
ecliptic (plane of the), 37, 199
ecliptic coordinates, 37, 198
to equatorial conversion, 42, 51–3

elements, orbital, 201

of binary stars, 157

of comets, 145

of Moon, 165

of planets, 123

of Sun, 103, 104

parabolic, 151

eclipse, 102, 199

elongation (solar), 118, 202
ephemeris time (ET), 16, 30, 203
epoch, 6, 8, 9, 199

fundamental epoch for Julian date, 8

Julian date of epoch 2010 January 0.0, 9

starting point for calculations, 6, 8, 9
equation of the

centre, 104, 121, 199

error incurred by, 134
equinoxes, 199, 203
time, 116–17, 199

equator, 35, 199

pole of, 202

equatorial coordinates, 35–6, 198
to ecliptic coordinates conversion, 55
to galactic coordinates conversion, 56–8
to horizon coordinates conversion, 47–9
equatorial horizontal parallax, 84, 200
equinox, 199

autumnal, 23, 199

precession of the, 71–6, 200

vernal, 36, 37, 199

evection, 162, 199

Excel, spreadsheet software, xiii, xix

extinction, 99, 199

figure of the Earth, 83–4, 199

first point of Aries, 36, 37, 199

first quarter of Moon, 171, 202

FIX, spreadsheet function, 9

FLOOR, spreadsheet function, 9
focus of an ellipse, 102, 199
formulas, in spreadsheets, xiv
fractional part of a number, 3
full Moon, 171, 202
functions
ATAN2, 48, 50
bott-in to spreadsheet, 4
CONCATENATE, 180
DEGREES, 47
FIX, 9
FLOOR, 9
IF, 4, 26
INT, 9, 13, 23
intrinsic to spreadsheet, 4
MOD, 4
nested, 20
RADIANS, 47
ROUND, 15
TEXT, 180
TRUNC, 4, 9
galactic coordinates, 38, 198
to equatorial conversion, 58–9
galactic latitude, 200
galactic longitude, 200
Galaxy
ascending node of plane on equator, 56
centre, 38
plane, 38
pole, 56
generalised coordinate transformations, 42, 60–5
geocentric coordinates, 83, 199
galactic latitude, 84, 199, 200
galactic longitude, 200
galactic parallax, 83–7, 199
galactic longitude, 200
galactic latitude, 83, 200
geographical latitude, 83, 200
geographical longitude, 200
geostationary satellite, 34, 199
Gibbous Moon, 171, 202
global positioning system (GPS) time, 16, 200
gravity, 102, 119, 162, 200
great circle, 34, 200
Greenwich mean time (GMT), 16, 200
Greenwich meridian, 16, 27, 69, 200
Greenwich sidereal time (GST), 23–7, 203
to local sidereal time (LST) conversion, 27
to UT conversion, 24–7
Gregorian calendar, 2, 197
Halley, comet, 148
orbital elements of, 145
heliocentric latitude, 200
heliocentric longitude, 200
heliographic coordinates, 88–92, 198
of centre of the Sun’s disc, 88–92
horizontal coordinates, 34, 198
to equatorial coordinate conversion, 49–51
horizontal parallax, 84, 200
equatorial, 84, 200
of Moon, 176–7
hour angle, 35, 36, 200
at rising or setting, 68
effect of refraction on, 81
to right ascension conversion, 45
hourly motions
of Moon, 170
of Sun, 185, 191
hours, conversion to
degrees, 41
or from minutes and seconds form, 14,
15–16
radians, 41
IF, spreadsheet function, 4, 26
inclination of
lunar equator, 95
lunar orbit, 163
orbit, 200
planetary orbit, 124
solar equator, 90
inner planet, 124, 200
INT, spreadsheet function, 9, 13, 23
integer part of a number 3, 9
FIX, 9
FLOOR, 9
INT, 9, 13
TRUNC, 9
international atomic time (TAI), 16, 30, 203
intrinsic spreadsheet functions, 4
iteration to solve
cubic equation, 151, 152
Kepler’s equation, 107, 108, 143
Julian calendar, 2, 197
Julian date, 8–10, 200
Julian day number, 200
modified Julian date or day number (MJD), 8,
201
to Greenwich calendar date conversion, 11
Jupiter, orbital elements of, 123
Kepler’s equation, 107, 143, 158, 159, 200
iterative routine to solve, 108, 143
nomogram for first guess, 147
Kepler’s graphs, 143, 146
label, of spreadsheet cell, xiv
astronomical, 83, 197
ecliptic, 37, 200
galactic, 38, 200
geocentric, 84, 199, 200
galactic, 83, 200
geographical, 88
selenographic, 95
leap year, 2
length of day, 23, 116
libration, 95, 200
light flux from Sun
variation with distance, 140
light time, 200
light travel time from
planet, 136
Sun, 101, 110
Index

linking spreadsheets, xviii
local civil time, 16–20, 22
to UT conversion, 16–20
local noon, 17, 116, 201
local sidereal time (LST), 27, 43, 203
at rising or setting, 67–71
to GST conversion, 28–30
longitude, 200
ecliptic, 37, 200
galactic, 38, 200
geocentric, 200
geographical, 200
heliocentric, 200
heliographic, 88
selenographic, 95
lunar eclipse, 181, 198
calculation of, 184–9
duration of, 183
lunation, 172, 200
lunisolar precession, 71–6, 200
magnitude, 140, 200
of eclipse, 188, 200
of Moon, 140
of planet, 140–1
of Sun, 140
major axis of ellipse, 102, 199
Mars, orbital elements of, 123
matrices, 60–2
mean anomaly, 103, 121, 122, 143, 197
mean motion of
Moon, 164, 170
Sun, 112, 185, 191
mean sidereal time, 203
mean solar time, 203
mean Sun, 103, 116, 201
Mercury, orbital elements of, 123
meridian, 36, 201
Greenwich meridian, 16, 27, 69, 200
observer’s meridian, 201
Microsoft Excel, xiii, xix
minor axis of ellipse, 102
MOD, spreadsheet function, 4
modified Julian date or day number (MJD), 8, 201
month, 2, 201
anomalistic, 201
draconic, 163, 201
nodal, 163, 201
sidereal, 162, 201
synodic, 162, 201
Moon, 161–80
age of (phase), 171–2, 197, 202
angular diameter of, 176–7
calculating the position of, 164–7
corrections to orbit of, 162, 164–5
distance of, 176–7
eclipse of, 181, 198
error in calculating position of, 166, 167
hourly motions of, 170
magnitude of, 140
orbit of, 162–3
orbital elements of, 165
parallax of, 176–7, 178
perigee, advance of, 163
phases of, 171–2, 202
position-angle of bright limb, 175
quarters of, 2, 171–2, 202
rising and setting of, 178–80
selenographic coordinates, 95–8, 198
moon anomaly, 164
moonrise, 178–80
moonset, 178–80
movement of stars about pole, 35, 36, 67–9
nadir, 201
nautical twilight, 203
Neptune, orbital elements of, 123
nested spreadsheet functions, 20
new Moon, 171, 202
nodal month, 163, 201
node, 120, 201
nomogram for first guess in iterative solution of Kepler’s
equation, 147
noon, 17, 116, 201
north celestial pole, 35, 201
notation
algebraic, xi
reverse Polish (RPN), xi
nutation, 76–7, 201, 203
obliquity of the ecliptic, 37, 51, 201
observer’s meridian, 36, 201
OpenOffice Calc, xiii, xix
opposition, 201
orbit, 102, 201
of binary stars, 155–9
of comets, 143–51
of Moon, 162–3
of planets, 120
parabolic, 151–4, 201
period, 201
perturbations to, 132–4, 202
Sun (apparent), 103
orbital elements, 201
of binary stars, 157
of comets, 145
of Moon, 165
of planets, 123
of Sun, 103–4
parabolic, 151
osculating elements, 201
outer planet, 124, 201
parabolic orbits, 151–4, 201
parallax, 83–7, 201
effect on rising and setting, 68
equatorial horizontal parallax, 84, 200
geocentric parallax, 83–7
horizontal parallax, 84, 200
of Moon, 176–7, 178
partial eclipse, 181, 198, 202
penumbral, 201
size of Earth’s, 184
penumbral phase of eclipse, 181, 202
periastron, 155, 201
perigee, 103, 104, 201
advance of Moon’s, 163
perihelion, 102, 201
argument of, 120, 143
period
of Moon’s nodes, 163
of Moon’s perigee, 163
of orbit, 201
synodic, 203
perturbations, 202
to planet’s orbit, 132–4, 202
phase, 202
of Moon, 171–2, 202
of planets, 137–8, 202
phase of eclipse, 181, 202
duration of, 183
partial, 171, 202
penumbral, 171, 202
total, 181, 202
umbra, 181, 202
physical libration, 95, 200
pi, value of, 206
plane of the ecliptic, 37, 199
obliquity of, 37, 51, 201
planet, 119–41, 202
angular diameter of, 136
brightness of, 140–1
calculating approximate position of,
131–2
calculating more exact position of,
121–8
distance of, 136
inner, 124, 200
light-travel time, 136
magnitude, 140–1
orbit of, 120
orbital elements of, 123
outer, 124, 201
perturbations to orbit of, 132–4, 202
phase of, 137–8, 202
position-angle of bright limb of, 138–9
reflectivity of, 202
polar distance, 68, 202
Polaris, 67
pole, 35, 37, 56, 202
of the ecliptic, 37, 202
of the equator, 202
position-angle, 202
position-angle of bright limb of
Moon, 175
planet, 138–9
precession (of the equinoxes), 71–6, 200
precision, double, xii
primary (of binary star), 155, 202
prograde motion, 162, 202
of Moon’s perigee, 163
quadrants of a circle, 53, 54
quadrature phase of Moon, 171, 202
quarters of Moon, 2, 171–2, 202
radians, 202
conversion to degrees, 109, 202
conversion to hours, 41
RADIIANS, spreadsheet function, 47
radius vector, 102, 202
reflectivity of planet, 202
refraction, 80–2, 197
effect on altitude, 80, 81
effect on hour angle, 81
effect on right ascension and declination, 81
effect on rising and setting, 68, 81
remainder, 3
renaming a spreadsheet, xvii
retrograde motion, 163, 202
of Moon’s nodes, 163
reverse Polish notation (RPN), xi	right ascension, 36, 202
conversion to hour angle, 43–5
effect of aberration on, 78–9
effect of precession on, 71
effect of refraction on, 80–2
rigorous precession, 72–6
rising, 67–71, 202
effect of parallax on, 68
effect of refraction on, 68, 81
of Moon, 178–80
of Sun, 112–13
rotation axis of
Earth, 35, 71
Sun, 88
ROUND, spreadsheet function, 15
routines
R1 (converting the date to the day number), 8
R2 (finding a solution to Kepler’s equation), 108
R3 (to solve cubic equation), 152
row, of spreadsheet, xiv
rules of eclipse, 183
Saros cycle, 183, 202
satellite, geostationary, 34, 199
Saturn, orbital elements of, 123
second (SI), 202
selenographic coordinates, 95–8, 198
semi-major axis of ellipse, 102, 198, 199
semi-minor axis of ellipse, 102
setting, 67–71, 202
effect of parallax on, 68
effect of refraction on, 68, 81
of Moon, 178–80
of Sun, 112–13
shadow of Earth or Moon, 181–2
angular radius of, 184, 186
sidereal clock, 23
sidereal day, 23, 198
sidereal month, 162, 201
sidereal time (ST), 22–3, 30, 203
Greenwich sidereal time (GST), 23–7, 203
local sidereal time, 27, 43, 203
sidereal year, 204
software, spreadsheet, xix
solar day, 22, 198
Index

solar eclipse, 181, 198
 calculation of, 190–3
duration of, 183
solar elongation, 118, 202
Solar System, 119, 202
solar time, 203
solstice, 202
spheroid of revolution, 83, 199
spreadsheet, xiii–xx
 adjusting column width of, xvii
calculations with multiple, xvii–xix
cell, xiv
cell label, xiv
column, xiv
column width, xvii
formulas, xiv
functions, xix–xx
 instead of multiple sheets, xix
layout of in this book, xvi–xvii
linking, xviii
renaming, xvii
row, xiv
software (BASIC, Calc, Excel), xix
tabs, xvii
using for complex calculations, xv
using functions as formulas, xix
what they are, xiii–xvi
spreadsheet functions
ATAN2, 48, 50
CONCATENATE, 180
DEGREES, 47
FIX, 9
FLOOR, 9
IF, 4, 26
INT, 9, 13, 23
intrinsic, 4
MOD, 4
nested, 20
RADIANS, 47
ROUND, 15
TEXT, 180
TRUNC, 4, 9
starting point for calculations, 6, 8, 9
sub-Earth point, 202
 on Moon, 95, 198
sub-solar point (on Moon), 97
Sun, 101–18
 angular diameter of, 110–11
 apparent orbit, 103
 as a time-keeper, 116
calculating the position of, 103–5
 Carrington rotation numbers, 94
distance of, 110–11
eclipse of, 181, 198
 heliographic coordinates, 88–92, 198
 hourly motion of, 185, 191
 light-travel time, 101, 110
 magnitude of, 140
 mean, 103, 116, 201
 mean rotation period of, 88
 motion along the ecliptic, 37, 112
non-uniform apparent motion, 116
 observation of, 88
 orbital elements of, 103–4
 position-angle of rotation axis, 91
 rising and setting, 112–13
 rotation axis of, 88
 speed in apparent orbit, 116
sundial, 116
sunset, 112–13
synchronous period, 203
tabs, of spreadsheet, xvii
terminator, 138, 203
terrestrial-dynamic time (TDT), 17, 30, 203
terrestrial time (TT), 16, 30, 203
TEXT, spreadsheet function, 180
third quarter of Moon, 171, 202
time, 1–30, 203
 apparent sidereal time, 203
 atomic time, 16, 30, 203
 British summer time (BST), 17, 203
daylight saving time, 17, 203
dynamical time, 16, 30, 203
ephemeris time (ET), 16, 30, 203
ehind equation of, 116–17, 199
global positioning system (GPS) time, 16, 200
Greenwich mean time (GMT), 16, 200
Greenwich sidereal time (GST), 23–7, 203
to local sidereal time conversion, 27
to UT conversion, 24–7
international atomic time (TAI), 16, 30, 203
local civil time, 16–20, 22
to UT conversion, 16–20
local sidereal time (LST), 27, 43, 203
to GST conversion, 28–30
mean sidereal time, 203
mean solar time, 203
solar time, 203
terrestrial dynamic time (TDT), 17, 30, 203
terrestrial time (TT), 16, 30, 203
to decimal hours conversion, 14
to degrees conversion, 41
to hours, minutes and seconds conversion, 15
to radians conversion, 41
transmission services, 16
universal time (UT), 16–20, 23, 30, 203
to GST conversion, 23–4
to local civil time conversion, 20–2
time zones, 17–20, 203
tropical year, 2, 204
true anomaly, 103, 107, 108, 121, 122, 144, 197
TRUNC, spreadsheet function, 4, 9

twilight, 114–15, 203

umbra, 203

size of Earth’s, 184

umbral phase of eclipse, 181, 202

universal time (UT), 16–20, 23, 30, 203

Uranus, orbital elements of, 123

variation, 162, 203

Venus, orbital elements of, 123

vernal equinox, 35–7, 199, 203

visible disc of planet, 137

web site, xx, 209

year, 204

anomalistic, 204

Besselian, 204

civil, 2

leap, 2

sidereal, 204

starting point for calculations, 6, 8, 9

tropical, 2, 204

zenith, 34, 204

zenith angle (or distance) 80, 204

effect of refraction on, 80

zone correction, 17–19, 204

zone time, 17–20