THE ONE-DIMENSIONAL HUBBARD MODEL

The description of a solid at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the corresponding many-body problems analytically or numerically, although much insight can be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been applied to problems as diverse as high-T_c superconductivity, band magnetism and the metal-insulator transition.

Remarkably, the one-dimensional Hubbard model can be solved exactly using the Bethe ansatz method. The resulting solution has become a laboratory for theoretical studies of non-perturbative effects in strongly correlated electron systems. Many methods devised to analyse such effects have been applied to this model, both to provide complementary insight into what is known from the exact solution and as an ultimate test of their quality.

This book presents a coherent, self-contained account of the exact solution of the Hubbard model in one dimension. The early chapters develop a self-contained introduction to Bethe’s ansatz and its application to the one-dimensional Hubbard model, and will be accessible to beginning graduate students with a basic knowledge of quantum mechanics and statistical mechanics. The later chapters address more advanced topics, and are intended as a guide for researchers to some of the more recent scientific results in the field of integrable models.

The authors are distinguished researchers in the field of condensed matter physics and integrable systems, and have contributed significantly to the present understanding of the one-dimensional Hubbard model. Fabian Essler is a University Lecturer in Condensed Matter Theory at Oxford University. Holger Frahm is Professor of Theoretical Physics at the University of Hannover. Frank Gohmann is a Lecturer at Wuppertal University, Germany. Andreas Klümper is Professor of Theoretical Physics at Wuppertal University. Vladimir Korepin is Professor at the Yang Institute for Theoretical Physics, State University of New York at Stony Brook, and author of Quantum Inverse Scattering Method and Correlation Functions (Cambridge, 1993).
THE ONE-DIMENSIONAL HUBBARD MODEL

FABIAN H. L. ESSLER
Oxford University

HOLGER FRAHM
University of Hannover

FRANK GÖHMANN
Wuppertal University

ANDREAS KLÜMPER
Wuppertal University

VLADIMIR E. KOREPIN
State University of New York at Stony Brook
Contents

Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
</table>

1 **Introduction**

1.1 On the origin of the Hubbard model 1
1.2 The Hubbard model – a paradigm in condensed matter physics 5
1.3 External fields 11
1.4 Conclusions 14

Appendices to Chapter 1 15

1.A Response to external fields 15

2 **The Hubbard Hamiltonian and its symmetries** 20

2.1 The Hamiltonian 20
2.2 Symmetries 25
2.3 Conclusions 35

Appendices to Chapter 2 36

2.A The strong coupling limit 36
2.B Continuum limits 45

3 **The Bethe ansatz solution** 50

3.1 The Hamiltonian in first quantization 51
3.2 Solution of the two-particle problem 54
3.3 Many-particle wave functions and Lieb-Wu equations 64
3.4 Symmetry properties of wave functions and states 67
3.5 The norm of the eigenfunctions 68
3.6 Conclusions 72

Appendices to Chapter 3 73

3.A Scalar products and projection operators 73
3.B Derivation of Bethe ansatz wave functions and Lieb-Wu equations 76
3.C Some technical details 94
3.D Highest weight property of the Bethe ansatz states with respect to total spin 96
3.E Explicit expressions for the amplitudes in the Bethe ansatz wave functions 101
vi

Contents

3. F Lowest weight theorem for the η-pairing symmetry 105
3. G Limiting cases of the Bethe ansatz solution 112

4 String hypothesis 120
4.1 String configurations 121
4.2 String solutions as bound states 125
4.3 Takahashi’s equations 128
4.4 Completeness of the Bethe ansatz 131
4.5 Higher-level Bethe ansatz 133
Appendices to Chapter 4 134
4. A On deviations from the string hypothesis 134
4. B Details about the enumeration of eigenstates 137

5 Thermodynamics in the Yang-Yang approach 149
5.1 A point of reference: noninteracting electrons 149
5.2 Thermodynamic Bethe Ansatz (TBA) equations 153
5.3 Thermodynamics 161
5.4 Infinite temperature limit 162
5.5 Zero temperature limit 163
Appendices to Chapter 5 168
5. A Zero temperature limit for ε′ 1(Λ) 168
5. B Properties of the integral equations at T = 0 168

6 Ground state properties in the thermodynamic limit 175
6.1 A point of reference: noninteracting electrons 175
6.2 Defining equations 177
6.3 Ground state phase diagram 178
6.4 Density and magnetization 184
6.5 Spin and charge velocities 187
6.6 Susceptibilities 188
6.7 Ground state energy 193
Appendices to Chapter 6 195
6. A Numerical solution of integral equations 195
6. B Ground state properties in zero magnetic field 197
6. C Small magnetic fields at half filling: application of the
 Wiener-Hopf method 202

7 Excited states at zero temperature 209
7.1 A point of reference: noninteracting electrons 210
7.2 Zero magnetic field and half-filled band 211
7.3 Root density formalism 225
7.4 Scattering matrix 236
7.5 ‘Physical’ Bethe ansatz equations 242
7.6 Finite magnetic field and half-filled band 244
7.7 Zero magnetic field and less than half-filled band 253
7.8 Finite magnetic field and less than half-filled band 261
7.9 Empty band in the infinite volume 262
Contents

Appendices to Chapter 7 .. 265
 7.B Lower bounds for $\epsilon_n(0), n \geq 2$ at half filling in a finite magnetic field 267

8 Finite size corrections at zero temperature 268
 8.1 Generic case – the repulsive Hubbard model in a magnetic field 268
 8.2 Special cases ... 276
 8.3 Finite size spectrum of the open Hubbard chain 283
 8.4 Relation of the dressed charge matrix to observables 290
Appendices to Chapter 8 ... 294
 8.A Wiener Hopf calculation of the dressed charge 294

9 Asymptotics of correlation functions 297
 9.1 Low energy effective field theory at weak coupling 297
 9.2 Conformal field theory and finite size scaling 303
 9.3 Correlation functions of the one-dimensional Hubbard model 308
 9.4 Correlation functions in momentum space 320
 9.5 Correlation functions in the open boundary Hubbard chain 324
Appendices to Chapter 9 .. 331
 9.A Singular behaviour of momentum-space correlators 331

10 Scaling and continuum limits at half-filling 333
 10.1 Construction of the scaling limit 333
 10.2 The S-matrix in the scaling limit 335
 10.3 Continuum limit .. 337
 10.4 Correlation functions in the scaling limit 344
 10.5 Correlation functions in the continuum limit 361
 10.6 Finite temperatures .. 367
Appendices to Chapter 10 .. 369
 10.A Current algebra ... 369
 10.B Two-particle form factors .. 371
 10.C Correlation functions in the Gaussian model 372

11 Universal correlations at low density 376
 11.1 The Hubbard model in the gas phase 377
 11.2 Correlation functions of the impenetrable electron gas 383
 11.3 Conclusions ... 392

12 The algebraic approach to the Hubbard model 393
 12.1 Introduction to the quantum inverse scattering method 393
 12.2 Shastry’s R-matrix .. 411
 12.3 Graded quantum inverse scattering method 425
 12.4 The Hubbard model as a fundamental graded model 440
 12.5 Solution of the quantum inverse problem 450
 12.6 On the algebraic Bethe ansatz for the Hubbard model 452
 12.7 Conclusions ... 470
Appendices to Chapter 12 .. 472
Contents

12. A A proof that Shastry's R-matrix satisfies the Yang-Baxter equation 472
12. B A proof of the inversion formula 479
12. C A list of commutation relations 484
12. D Some identities needed in the construction of the two-particle algebraic Bethe ansatz-states 484
12. E An explicit expression for the fermionic R-operator of the Hubbard model 486

13 The path integral approach to thermodynamics 488
13.1 The quantum transfer matrix and integrability 489
13.2 The Heisenberg chain 496
13.3 Shastry's model as a classical analogue of the 1d Hubbard model 509
13.4 Diagonalization of the quantum transfer matrix 510
13.5 Associated auxiliary problem of difference type 514
13.6 Derivation of non-linear integral equations 519
13.7 Integral expression for the eigenvalue 525
13.8 Numerical results 536
13.9 Analytical solutions to the integral equations 547
13.10 Conclusions 555
Appendices to Chapter 13 557
13. A Derivation of TBA equations from fusion Hierarchy analysis 557
13. B Derivation of single integral equation 560

14 The Yangian symmetry of the Hubbard model 563
14.1 Introduction 563
14.2 The variable-range-hopping Hamiltonian 564
14.3 Construction of the Yangian generators 566
14.4 Special cases 570
14.5 Conclusions 573
Appendices to Chapter 14 575
14. A Yangians 575

15 S-matrix and Yangian symmetry in the infinite interval limit 599
15.1 Preliminaries 599
15.2 Passage to the infinite interval 600
15.3 Yangian symmetry and commuting operators 605
15.4 Constructing N-particle states 607
15.5 Eigenvalues of quantum determinant and Hamiltonian 617
15.6 Conclusions 617
Appendices to Chapter 15 618
15. A Some useful formulae 618

16 Hubbard model in the attractive case 620
16.1 Half-filled case 622
16.2 The ground state and low lying excitations below half filling 625
16.3 Interaction with magnetic field 626
Contents

16.4 Phase diagram 627
16.5 Critical behavior 628
16.6 Thermodynamics 630
Appendices to Chapter 16 633
16.A Appendix A 633
16.B Appendix B 635

17 Mathematical appendices 638
17.1 Useful integrals 638
17.2 The Wiener-Hopf method 640
References 643
Index 669
Preface

On account of Lieb and Wu’s 1968 Bethe ansatz solution, the one-dimensional Hubbard model has become a laboratory for theoretical studies of non-perturbative effects in strongly correlated electron systems. Many of the tools available for the analysis of such systems have been applied to this model, both to provide complementary insights to what is known from the exact solution or as an ultimate test of their quality. In parallel, due to the synthesis of new quasi one-dimensional materials and the refinement of experimental techniques, the one-dimensional Hubbard model has evolved from a toy model to a paradigm of experimental relevance for strongly correlated electron systems.

Due to the ongoing efforts to improve our understanding of one-dimensional correlated electron systems, there exists a large number of review articles and books covering various aspects of the general theory, as well as the Bethe ansatz and field theoretical methods. A collection of these works is listed in the General Bibliography below.

Still we felt – and many of our colleagues shared this view – that there would be a need for a coherent account of all of these aspects in a unified framework and from the perspective of the one-dimensional Hubbard model, which, moreover, would be accessible to beginners in the field. This motivated us to write this volume. It is intended to serve both as a textbook and as a monograph. The first chapters are supposed to provide a self-contained introduction to Bethe’s ansatz and its application to the one-dimensional Hubbard model, accessible to beginning graduate students with only a basic knowledge of Quantum Mechanics and Statistical Mechanics. The later chapters address more advanced issues and are intended to guide the interested researcher to some of the more recent scientific developments in the field of integrable models.

Although this book concentrates on the one-dimensional Hubbard model, we would like to stress that the methods used in its solution are general in the sense that they apply equally well to other integrable models, some of which we actually deal with in passing. In fact, the application of Bethe’s ansatz to the Hubbard model is more involved than in other cases. We expect the reader who has mastered the solution of the Hubbard model to be able to apply his/her knowledge readily to other integrable theories.

This volume does not pretend to cover its subject completely. Rather, we attempted to find a balance between being didactic and being comprehensive. Our selection of material
was necessarily governed by our predispositions. We apologize if we have failed to cover important issues adequately.

Ultimately this book originates in the many collaborations between the authors over the last ten years, which are documented in the reference section at the end of the book. Although the material presented has matured in the discussions between us, it is not difficult to infer from our different styles which author bears primary responsibility for which chapter, namely FG for chapters 2, 3, 11, 12, 14, 15, FHLE for chapters 4–7, 10 and 17, HF for chapters 8 and 9, AK for chapter 13, VEK for chapter 16, and FG and FHLE jointly for chapter 1.

Throughout this project and in many fruitful collaborations before we have benefitted immeasurably from numerous discussions with our colleagues and friends A. M. Tsvelik, N. d’Ambrumenil, T. Deguchi, H. Fehske, F. Gebhard, F. D. M. Haldane, V. I. Inozemtsev, A. R. Its, E. Jeckelmann, G. Jüttner, N. Kawakami, R. M. Konik, E. H. Lieb, S. Lukyanov, M. J. Martins, S. Murakami, A. A. Nersesyan, K. Schoutens, H. Schulz, M. Shiroishi, F. Smirnov, J. Suzuki, M. Takahashi, M. Wadati, A. Weisse and J. Zittartz. Special thanks are due to Andreas Schadschneider for discussions and his constructive criticism after reading the entire manuscript. We are grateful to M. Bortz, A. Fledderjohann, M. Karbach, P. Boykens, A. Grage, M. Hartung, R. M. Konik and A. Seel for proofreading parts of the manuscript and helpful comments.

Despite the joint efforts of many dear friends we do not expect the first edition of such a thick volume to be free of misprints. We plan to keep a record of all misprints brought to our knowledge on our personal websites.

We thank the Physics Departments at Brookhaven National Laboratory and the Universities of Bayreuth, Dortmund, Hannover, Stony Brook, Warwick and Wuppertal for providing stimulating environments during the course of writing this book.

FHLE acknowledges support by the Department of Energy under contract DE-AC02-98 CH10886.

General bibliography

Books

Preface

Review articles

N. Andrei, Integrable models in condensed matter physics, preprint, cond-mat/9408101.

Preface

Reprint volumes

Preface

Instead of a reading guide

1 Introduction
2 Hamiltonian and Symmetries
3 Bethe Ansatz
4 Strings
5 TBA
6 Ground State
7 Excitations
8 Finite Size Corrections
9 CFT & Correlation Functions
10 Scaling Limit
11 Low Density Correlations
12 Algebraic Approach
13 QTM
14 Yangians
15 S–Matrix on Infinite Line

The figure shows the logical interdependence of the chapters and may serve the reader to find individual paths through this book. Chapters 16 and 17 have the character of appendices and are logically independent from the remaining part of the book.