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Abstract
Clusters of galaxies emerge as nodes in the gravitationally evolving cosmic web of dark
matter and baryons that defines the large-scale structure of the Universe. X-ray and optical
observations offer plentiful evidence of clusters’ dynamical youth, yet bulk measures derived
from these observations are tightly correlated, indicating a high degree of structural regu-
larity that makes the population an attractive probe of cosmology. Accurate constraints on
cosmological parameters require a precise and unbiased model relating observables to total
mass, as well as a statistical characterization of the massive halo population within a given
cosmology. In this contribution, I focus on the latter by providing evidence from simulations
for O(10%) calibration of the space density as a function of mass and for O(1%) calibra-
tion of the dark matter virial relation. Matching the observed space density as a function
of X-ray temperature for a ΛCDM world model is presented as an example of astrophys-
ical/cosmological confusion. The resulting constraint βσ8

−5/3 = (1.10± 0.07) combines β,
the ratio of specific energies in dark matter and intracluster gas, with σ8, the normalization
of the mass fluctuation spectrum. Disentangling astrophysical and cosmological factors for
upcoming large statistical surveys is the main challenge in the quest to use galaxy clusters
as sensitive probes of dark matter and dark energy.

1.1 Introduction
Cosmology is now a data-rich subject, with empirical support from at least four

independent channels: the cosmic microwave background (CMB) radiation, light element
nucleosynthesis, Type Ia supernovae, and large-scale cosmic structure. The latest CMB ob-
servations from the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. 2003)
and ground-based experiments have revealed the series of acoustic peaks expected in an in-
flationary, hot Big Bang picture (Scott, Silk, & White 1995) and spotlight a fundamentally
unexpected model containing roughly two-thirds vacuum or dark energy, one-third dark mat-
ter, and about four percent ordinary (baryonic) matter (Spergel et al. 2003). The nature of
the principal dark components remains a mystery.

The ornery energy of Fritz Zwicky, though unlikely to dominate the Universe, is nonethe-
less involved in all this. Zwicky’s revelation of dark matter in the Coma cluster (Zwicky
1933, 1937) established the roots of the modern era, and it is fitting to recognize his seminal
contributions at this centennial event of the Carnegie Observatories. The problem of missing
mass, as it was then known, derived from the humble virial theorem, helped to spark the
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2 A. E. Evrard

Table 1.1. Mass Hierarchy in the Coma Cluster

Component M(< 1.5h−1 Mpc) M/Mvis

(M�)

Totala 1.3±0.3×1015 h−1
70 9.0±2.5

Intracluster gas 1.3±0.2×1014 h70
−5/2 0.90±0.02

Galaxies 1.4±0.3×1013 h−1
70 0.10±0.03

aEstimated from gas dynamic simulations.

now vast and complex hunt at large collider experiments and underground laboratories for
the particle constituent of dark matter.

A half-century after Zwicky’s study, advances in X-ray astronomy revealed the full mass
hierarchy within clusters: galaxies are outweighed by an encompassing hot intracluster
medium (ICM), and the combined visible mass remains a minority of the total. High-
throughput spectroscopy of the ICM established its nearly isothermal nature, and high-
resolution imaging from the ROSAT mission (Briel, Henry, & Böhringer 1992) enabled ac-
curate estimates of ICM masses as well as estimates of total masses, under a hydrostatic
equilibrium assumption, which confirmed, within ∼30% statistical errors, the optical virial
estimates of Dressler (1978) and many others (see Girardi et al. 2000). Estimates of the
mass hierarchy for the Coma cluster (White et al. 1993) are listed in Table 1.1 for a Hubble
constant H0 =70h70 km s−1 Mpc−1.

Why was galaxy formation in Coma so inefficient? To what extent is the environment
within Coma representative of the state of clusters in general? Or of the Universe as a whole?
Answers to many of these questions are now becoming available from increasingly large
statistical surveys of galaxies and clusters, along with detailed investigation of individual
clusters using 8 m-class optical telescopes. Papers presented at this meeting offer many
excellent examples of both such approaches.

On the theory side, modeling the development of galaxies and the ICM within a cosmo-
logical framework of hierarchical clustering poses a formidable task. Although the physi-
cal processes—gravity, heating by shocks, cooling and (especially in low-density regions)
heating by radiation, magnetic fields, conduction, turbulent mixing, etc.—are now firmly in
hand, the complex, nonlinear interactions that govern their time evolution are analytically
intractable, even for highly simplified geometries. Computational solutions are progressing
(Kauffman et al. 1999; Somerville & Primack 1999; Cole et al. 2000), but the accuracy of
solutions is limited by uncertainties associated with the “mesoscopic” processes involved in
stellar birth, evolution, and death. The role of central black holes/active galactic nuclei on
the galaxy/ICM interaction is only beginning to be explored (cf. Brüggen & Kaiser 2002).

Such modeling uncertainties are a cause for concern to cosmologists, since biased pa-
rameter estimates will result from application of an incorrect astrophysical model. Let C
represent the vector of cosmological parameters (clustered mass density Ωm, baryon mass
density Ωb, vacuum energy density ΩΛor dark energy ΩDE, spectrum normalization σ8, etc.)
and let R represent a set of observations from a cluster survey. Then Bayes’ theorem makes
clear that identifying the most likely cosmology is dependent on knowing precisely how
likely are the observations within that world model:
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Galaxy clusters as probes of cosmology and astrophysics 3

p(C | R) ∝ p(R | C) pprior(C). (1.1)

For the CMB, the relevant likelihoods p(R | C) are calculable to high accuracy with codes
such as CMBFAST (Seljak & Zaldarriaga 1996). For Type Ia supernovae, only the lumi-
nosity distance dL(z) is needed to compute the apparent brightness of standard candles as a
function of redshift (although proving the standard candle nature is challenging). For galaxy
clusters and most other large-scale structure signatures, nonlinear dynamics and astrophysi-
cal uncertainties complicate the computation of the observable likelihood p(R | C).

There are computational and empirical reasons to suspect that the problem, though com-
plex, is still tractable. Tight correlations, such as that between ICM mass MICM and X-ray
temperature TX (Mohr, Mathiesen, & Evrard 1999), are observed among intrinsic properties
of local clusters. Simulated clusters follow narrow scaling relations (Evrard 1989; Navarro,
Frenk, & White 1995, hereafter NFW; Evrard, Metzler, & Navarro 1996; Bryan & Nor-
man 1998). These findings motivate a basic framework in which clusters are essentially
a one-parameter family ordered by a size parameter, typically taken to be the total mass
M. (Exactly how mass is defined is a detail discussed below.) Tight scaling relations be-
tween M and TX reflect virial equilibrium, while retention of the cosmic baryon fraction and
inefficient cooling/star formation within cluster environments lead to a strong correlation
MICM∼(Ωb/Ωm) fhotM, with fhot the fraction of baryons not processed into cold gas or stars.

In this paper, I take the perspective of separating the problem into two, quasi-independent
pieces. For a given cosmology, the question of computing the likelihood of an observable,
say the expected number of clusters with temperate T at redshift z, can be split into two
parts, namely

• How many clusters of mass M exist in this cosmology at redshift z?
• What is the likelihood that a cluster of mass M at redshift z will have temperature T ?

In general, the answer to the second question will require an astrophysical model defined by
some set of parameters A. For example, varying the efficiency of supernova or active galac-
tic nuclei heating will affect the detailed form of the joint likelihood p(M,T ) at a particular
epoch.

Under this separable assumption, the likelihood of forming a cluster of temperature T at
redshift z will be a convolution

p(T,z |C,A) =

∫
dM p(M,z |C) p(T |M,z,A)∫

dM p(M,z |C)
, (1.2)

where p(M,z |C) gives the likelihood that a cluster of mass M exists at redshift z in cosmol-
ogy C and p(T |M,z,A) gives the likelihood that such a cluster has temperature T for the
particular astrophysical model A.

In § 1.2, after briefly reviewing the framework of nonlinear structure formation, I present
recent calibrations of the cluster space density by large simulations and show that this prob-
lem, modulo some inherent arbitrariness in assigning mass to halos, is now on quite firm
footing. In § 1.3, the virial relation linking mass to ICM temperature is discussed and dis-
crepancies between computational and empirical approaches are noted. This motivates a
“back-door” approach to calibrating the mass scale of the cluster population that stems from
very precise determination of the dark matter virial relation discussed in § 1.4. Implications
emerge in § 1.5, where the observed cluster space density as a function of temperature forges
a link between σ8 (a cosmological parameter) and the ratio of cluster component energies
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4 A. E. Evrard

β (a purely astrophysical parameter). Unless sources of substantial systematic error can be
identified, the low normalization σ8 ≈ 0.7 − 0.8 inferred from WMAP analysis will require
significantly more heating of the ICM plasma than is provided by gravitational collapse
alone. A concluding discussion is provided in § 1.6.

1.2 Clusters as Dark Matter Potential Wells
An early inflationary period in the history of the Universe is thought to seed the

Universe with fluctuations in energy density (Kolb & Turner 1990). Depending on the cho-
sen scenario, the spectrum of primordial density fluctuations can differ from a power law,
and a general expression is a form with a running spectral index:

Pprim(k) = P(k0)

(
k
k0

)ns(k)

, (1.3)

where ns(k) = ns(k0) + dns/dln k ln(k/k0). Recent analysis of WMAP thermal fluctuations
combined with 2dF galaxy and Lyα forest power spectrum estimates suggest, at the 2σ
level, a nonzero value for the spectral index derivative dns/dln k = −0.031+0.016

−0.017 (Spergel
et al. 2003).

During the pre-recombination era, when fluctuation amplitudes are small and a linear
treatment of independent wavemodes is valid, the primordial matter perturbations undergo
stagnant growth on small scales and (for warm/hot components) strong damping due to free-
streaming. The net result of such physics, which is particularly sensitive to the matter density
Ωm and the baryon fraction Ωb/Ωm, is summarized by a transfer function T (k) that defines
the post-recombination power spectrum Prec(k)≡T 2(k)Pprim(k) (Bond & Efstathiou 1984).

As discussed below, the mass dependence of the cluster space density is sensitive to
the logarithmic slope of the linear, post-recombination spectrum neff = d ln Prec(k)/dln k on
∼10h−1 Mpc scales. A statistically precise measurement of neff(k) can be sought using up-
coming large cluster samples, after systematic selection and projection effects are addressed
and understood.

1.2.1 Nonlinear Gravitational Condensation
In the linear regime, the growth rate of the fluctuation amplitude at any wavenumber

is controlled by a function D(a), the form of which is determined by the mix of matter
and energy components in the Universe (Peebles 1980; Carroll, Press, & Turner 1992).
As linearized wave amplitudes δ approach unity, mode coupling becomes important, and
the linear treatment must be extended to second and higher order (Bernadeau et al. 2002).
Comparison with N-body simulations confirm the validity of calculations to tenth order and
higher (Szapudi et al. 2000), but precise solution of the deeply nonlinear (δ ∼> 102) evolution
of the matter density and velocity fields is exclusively achieved by numerical simulation
(Bertschinger 1998).

Simulations of large comoving volumes show that, as mode-coupling strengthens, the
density field develops the texture of a “cosmic web” (Bond, Kofman, & Pogosian 1996), an
example of which is shown in Figure 1.1. Filaments and walls surround lower density voids
and bound ellipsoidal structures—the halos/clusters housing astrophysical objects—develop
through gravitational collapse, with the largest and rarest clusters forming at nodes defined
by major filament intersections. As discussed below, the spectrum of halos sizes can be
derived analytically from Prec(k) under spherical or ellipsoidal evolution approximations. For
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Galaxy clusters as probes of cosmology and astrophysics 5

Fig. 1.1. Large-scale structure of cold dark matter in a Hubble Length (3000h−1 Mpc) slice
through a simulated ΛCDM Universe at z = 0 (Evrard et al. 2002). The slice thickness
with 30h−1 Mpc and the greyscale show regions with above-average density smoothed on
a 1013 h−1M� scale.

effectively power-law spectra, the characteristic mass scale M∗ of the distribution evolves in
redshift according to M∗(a)∝ [D(a)]6/(neff+3) (Kaiser 1986), and this feature is the basis for
deducing a low matter density Universe from the sky surface density of massive clusters at
z ≈ 0.5 − 1 (Bahcall & Fan 1998; Donahue et al. 1998; Borgani et al. 2001).

Since both the Gaussian random initial conditions and the process of gravitational ampli-
fication have no sharp intrinsic scales, clusters do not develop obvious physical boundaries.
Instead, a roughly hydrostatic and dynamically older core connects seamlessly to an infall
region fed by material drawn mainly from the embedding filaments. Accretion of small ha-
los occurs nearly continuously up to the present, and major mergers that cause significant
phase space rearrangement happen stochastically every few dynamical times. Due to this
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6 A. E. Evrard

complexity, a unique definition of cluster mass is hard to justify. Instead, a few, quite similar
measures are in common use (Lacey & Cole 1994; White 2001, and references therein),
each defined by a threshold density that attempts to separate the quasi-equilibrium, or “viri-
alized”, cluster interior from its surrounding, infalling streams.

One way to address the mass ambiguity is to consider the relative merits of different mea-
sures. What “added value” does each bring to descriptive analysis of the cluster population?
As shown below, it appears that masses set by thresholds defined relative to the mean matter
density ρm(a) are convenient for counting clusters, while those defined relative to the criti-
cal density ρc(a) are advantageous for addressing internal structure issues such as the virial
relation linking mass to dark matter velocity dispersion or ICM thermal temperature.

In spherical models of perturbation evolution (Gunn & Gott 1972; Bertschinger 1985;
Lokas & Hoffmann 2000), a cluster develops from a local peak in the linear density field.
Peaks in Gaussian random fields exist on a wide range of scales, so to select those at a
particular scale M∝R3 it is useful to smooth the continuous density field ρ(x) with a spatial
filter W (|x′ − x|/R). The variance in the smoothed density field is

σ2(M) =
1

(2π)3

∫
d3k Prec(k) Ŵ 2(kR), (1.4)

where Ŵ (kR) is the Fourier transform of the spatial filter function. The use of a spherical
Heaviside, or “top-hat,” function [W (r/R)≡1 for r/R ≤ 1 and 0 otherwise] with comoving
scale 8h−1 Mpc defines a conventional measure of the present, linearly evolved power spec-
trum amplitude σ8≡σ(M8), with M8 =1.785(Ωm/0.3)×1014 h−1M�. The probability density
function (PDF) of the filtered density field is Gaussian normal in the variable ν≡δ/σ(M).

1.2.2 The Cluster Space Density
Counting the number of clusters as a function of size is currently an inexact exer-

cise for observers and theorists alike. In the sky, optical/infrared catalogs can be searched for
galaxy concentrations in redshift/color space (Bahcall et al. 2003; Nichol 2004). Detection
of the ICM via its X-ray emission (Rosati, Borgani, & Norman 2002) or its spectral distor-
tion of the microwave background radiation (Carlstrom, Holder, & Reese 2002) is another
means of cluster identification. Although the observable signatures are strongly correlated
(to first order, via the ever-useful “bigger is bigger” maxim), the scaling relations linking
pairs of observables display typically tens of percent intrinsic scatter (Borgani et al. 1999;
Mohr et al. 1999; Sanderson et al. 2003), and each measure is subject to different sources of
systematic and random errors.

The upshot is that an X-ray temperature-limited sample of clusters will differ some-
what from an optical richness-limited sample, and both will differ to some degree with
an Sunyaev-Zel’dovich-limited set of clusters. Given enough signal-to-noise ratio, the most
massive clusters will be identified by any method, but differences in how projected signals
add, along with intrinsic scatter among observables, will, at the minimum reorder, and more
likely reorder and blend a set of objects detected at even high signal-to-noise ratio. Under
realistic conditions, confusion will become more severe as one pushes to smaller systems
near the sample detection threshold (Bahcall et al. 2003).

With the advantage of full spatial information, theorists working with simulated volumes
are afforded higher precision. For a point set of simulation particles, percolation methods,
such as the “friends-of-friends” algorithm of Davis et al. (1985), have been a popular way to
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Galaxy clusters as probes of cosmology and astrophysics 7

define halos. Complex geometries typically bound the objects defined with this method (see
Fig. 4 of White 2001), and this aspect can complicate attempts to connect this mass measure
to observations.

A geometrically simpler approach is to identify a cluster as material lying within a sphere,
centered on a local density maximum or potential minimum, whose radial extent r∆ is de-
fined by an enclosed isodensity condition M(< r∆)/(4πr∆3/3)=ρt(z). Such spherical over-
density (SO) masses require a choice of threshold density ρt(z) that is typically written as a
multiple ∆ of either the mean mass density ρm(z) or the critical density ρc(z). These mea-
sures are referred to as “mean” and “critical” masses below. Although many treatments
employ a time-varying ∆ in cosmologies with Ωm �= 1 (Eke, Cole, & Frenk 1996), evidence
below suggests that this complication is unnecessary, and ∆ here is assumed constant.

Given a mass measure M, the space density n(M,z |C), or mass function, describes the
probability of finding a cluster at redshift z with total mass in the interval M to Medln M

within a suitably small comoving volume element dV :

p(M,z |C) = n(M,z |C)dV. (1.5)

An analytic form for the mass function, based on spherical dynamics and a Gaussian random
density field, was first developed by Press & Schechter (1974, hereafter PS) and rederived
using a rigorous excursion set approach by Bond et al. (1991). The resulting shape of n(M,z)
is dictated by the linear power spectrum σ(M) and its logarithmic derivative. The mass
fraction in halos of mass M at redshift z can be expressed in terms of a single function
f (σ−1):∗

f (σ−1,z) ≡ M
ρm(z)

n(M,z)
d ln M

dln σ−1 . (1.6)

The dependence on cosmology is implicit, determined by the fluctuation spectrum and its
rate of linear evolution D(a).

The PS treatment employs a spherical collapse model that assumes equilibrium is reached
when the linearly evolved interior density reaches a critical threshold δc (equal to 1.686 in
an Einstein-de Sitter cosmology). This leads to a mass function of the form

f (σ−1) =
√

2/π (δcσ
−1) exp[−(δcσ

−1)2/2]. (1.7)

Initial comparison of the model with N-body simulations yielded good agreement (Ef-
stathiou et al. 1988), but as computational dynamic range and fidelity improved, disagree-
ment in the detailed shape of the mass function emerged. Introduction of ellipsoidal, rather
than spherical, perturbation evolution greatly improved agreement with simulations (Sheth
& Tormen 1999; Sheth, Mo, & Tormen 2001, hereafter ST). The mass function in this case
takes the form

f (σ−1) = AST

√
2a/π [1 + (aδcσ

−1)−p] (δcσ
−1) exp[−(aδcσ

−1)2/2], (1.8)

with parameters AST = 0.3222, a = 0.707, and p=0.3.
Massively parallel computers, with aggregate memory in excess of one terabyte, have

enabled production of very large statistical samples of virtual clusters. Calibrations of the
mass function from such samples are reported in a number of recent papers (Governato et al.

∗ Note that, since σ(M) is a monotonic decreasing function in cold dark matter models, its inverse σ−1(M) has the
same sense as mass; high σ−1 implies high mass and vice versa.
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8 A. E. Evrard

Fig. 1.2. Calibration of the mass function from a set of 29 halo samples extracted from Virgo
Consortium simulations (Jenkins et al. 2001). Left: Mass fraction in halos as a function of
the similarity variable σ−1(M). The dotted curve shows the fit to the Jenkins mass function
(Eq. 1.9), while the dashed curve shows that the PS expectation (Eq. 1.7) has the wrong
shape. Right: Residuals in number density between the binned simulated samples and the
Jenkins mass function fit are shown as thin lines. The dashed line shows the difference
between the Jenkins mass function and ST prediction (Eq. 1.8), with parameters given in the
text.

1999; Bode et al. 2001; Jenkins et al. 2001; Evrard et al. 2002; Hu & Kratsov 2003; Reed
et al. 2003). The results from analysis of a suite of simulations performed by the Virgo
Consortium (Jenkins et al. 2001) are shown in Figure 1.2. The mass fraction as a function
of σ−1(M) is shown for 29 halo samples identified in 13 simulations and covering epochs
z ≈ 0 − 5 in four different cosmological models (see Table 2 of Jenkins et al. 2001).

All of the models are well fit by a function (hereafter the Jenkins mass function) of the
form

f (ln σ−1) = A exp[−|ln σ−1 + B|ε]. (1.9)

The parameter B controls the location of the peak in the collapsed mass fraction (eB plays
the role of δc in the PS and ST forms) while A controls the overall mass fraction in halos and
ε stretches the function to fit the overall shape of the simulation results. Values A = 0.315,
B=0.61, and ε=3.8 fit the data in Figure 1.2, which uses a friends-of-friends mass measure
with a linking length of 0.2 times the mean interparticle spacing. Note that these parameters
are independent of cosmological model and epoch. In this sense, it may be said that Nature
prefers to do accounting relative to the mean mass density.

We will see below that Nature appears to prefer doing dynamics relative to the critical
density. For a critical SO(200) mass measure, Evrard et al. (2002) show that Equation (1.9)
provides a good fit to the mass function with Ωm-dependent fit parameters A(Ωm) = 0.27 −
0.07Ωm and B(Ωm)=0.65+0.11Ωm (and ε=3.8). Hu & Kravtsov (2003) provide independent
confirmation of this fit for the case Ωm =0.15.

The right panel of Figure 1.2 shows that this form predicts the space density to an accu-
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Galaxy clusters as probes of cosmology and astrophysics 9

Fig. 1.3. The mass function of halos from the ΛCDM simulation of Reed et al. (2003). Data
points with Poisson error bars show the simulation results, while curves are ST predictions
at redshifts (from left to right) 0, 1, 2, 3, 4, 5, 6.2, 7.8, 10, 12.1, and 14.5.

racy of ∼ 20%. This panel also shows deviations with respect to the ST form with recal-
ibrated parameters AST = 0.353, a = 0.73, and p = 0.175. With the exception of the rarest
objects (ln σ−1 ∼> 0.7), this model gives an equally good fit. The PS formula for the rarest
systems underpredicts their abundance by more than a factor 10. The use of an ellipsoidal
collapse model (with two added parameters calibrated by simulation) is clearly superior to
the original PS spherical treatment.

Reed et al. (2003) reach a similar conclusion on the ST predictions, and offer a correction
factor to apply at high masses. As shown in Figure 1.3, their 4323 particle simulation of a
50h−1 Mpc region, which probes a more shallow region of the power spectrum compared
to cluster scales, shows stunning agreement with the ST predictions over a wide dynamic
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10 A. E. Evrard

Fig. 1.4. The bold line shows the Jenkins mass function expectations for a ΛCDM cosmol-
ogy with a default value σ8 = 0.9. Solid lines to the right and left of the default give the
Jenkins mass function for modified normalizations σ8 = 0.9e±0.148. The dashed lines show
the default Jenkins mass function with masses displaced by amounts e±0.371. The degeneracy
between mass scale and σ8 is apparent at space densities below 10−5h3 Mpc−3.

range in number density and epoch. The finding that the fit works well over 10 decades in
normalized mass M/M∗(z) is particularly impressive.

1.2.3 Mass-scale Uncertainty and σ8

The space density of the most massive clusters at a given epoch is exponentially
sensitive to σ8, but extracting σ8 from observations of massive clusters requires accurate
knowledge of cluster masses. From the form of the Jenkins mass function, Evrard et al.
(2002) derive dln σ8/dln M � 0.4 for massive clusters in a ΛCDM cosmology, meaning
that, at fixed spatial abundance, systematic errors of, say, 25% in the mass scale of clusters
translate into a systematic uncertainty of 10% in σ8. A simple demonstration of this effect is
given in Figure 1.4. The shapes of the functions, scaled separately in mass or σ8, are nearly
identical over the space density range 10−5 to 10−10h3 Mpc−3.

In summary, computational modeling now provides ∼10%-level accurate calibration of
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