additive spatial pattern, 10
adjacency matrix, 71
aggregation, 62, 118, 169, 335, 376, 382
clumping, patchy, patchiness, underdispersion, 50
indices, 21
Akaike information criterion (AIC), 191
Analysis of Molecular Variance (AMOVA), 313
analysis of movement
angles, 333
biased correlated random walks, 337
biased random walk, 342
correlated random walk, 337, 355
path tortuosity, 337
random walk, 336
spatial complexity, 338
angles, 150, 333, 336, 384
angle zone, 61
angular autocorrelation, 334
angular concentration, 334
boundary, 264
class matrix, 152
orientation, 61
tolerance, 61
turning, 333-334
angular
autocorrelation, 334, 372
concordance, 334
correlation, 334
anisotropic autocovariance, 235
anisotropy, 9, 14, 44-45, 59, 110, 131, 150, 156, 170, 176, 196,
235, 321, 323, 345
geometric, 156, 176
zonal, 156, 176
area pattern analysis, see surface pattern process
aspatial, 1, 172, 307, 351, 357, 374
 graph, 47, 69, 351, 367
network, 351
regression, 377
association, 142, 286, 307, 351, 357, 374
see also spatial association
asymmetric, 34
multi-species, 222
assumption, 12, 17, 20, 367
assumptions, 12, 17, 25, 41, 93, 106, 110, 122, 140, 142, 144-145, 152, 164, 175, 206, 244, 284, 289, 312, 341, 362, 364, 369, 390, 393
asymmetric matching coefficient, 306
atemporal
 graph, 351
autocorrelation, 7, 69, 80, 206, 214, 217, 220-221, 224, 229, 231, 300
angular, 334, 372
cycles, 240, 362
detecting, 11
exponential decline, 240, 362
induced, 218, 389
inherent, 206, 389
matrix, 217
models, 207, 212
negative, 221, 289, 305, 340
neighbourhood, 230
nonsignificant, 363
positive, 283
range, see spatial range
serial, 11, 258
spatial, 2, 8, 31, 145
spatio-temporal, 320, 360, 376
statistical nuisance, 15, 207
temporal, 341, 388
ture, 206
autocovariance, 145, 152, 230, 233
spatial, 145
autologistic model, 230
autoregressive 210, 219
autoregressive model (AR), 2
autoregressive integrated moving average (ARIMA), 381
autoregressive moving average (ARMA), 381
conditional autoregressive (CAR), 171
correlation, 220
double autoregression model, 209
simultaneous autoregressive (SAR), 171
β-diversity
 several gradients, 291
 with gradient, 289
 without gradient, 287
Bayesian analysis, 389
Bayesian spatial models, 234
Bayesian state-space movement model, 341
bilinear function, 264
binomial distribution
 negative, 393
test, 266
biogeography, 293
bivariate
 graph, 84
 pattern, 51, 97
tests, 182, 221
block size, 123-124, 126-128
Bonferroni correction, 147, 165
 progressive Bonferroni correction, 147
bootstrap, see randomization tests
boundary, 264
 clumping, 258
 cohesive, 266, 270, 276
 cohesive ecological boundaries, 271
 edge, 251
 elements, 264
 intermingling, 257
 overlap of ranges, 256
 pairwise clumping, 111
 persistence, 267, 275
 properties, 244
 rate of change, 264
 spatial autocorrelation, 266
 width, 252, 262, 265
 zone, 169, 250, 252, 265
boundary delineation, see boundary detection
boundary detection, 71, 244, 249, 306
angles, 264
Bayesian areal wombling, 268
Bayesian point wombling, 268
Canny adaptive filter, 275
Canny algorithm, 268
categorical-wombling, 267
contiguous quadrat data, 259
convolution, 262
hierarchical spatial partitioning, 273
image segmentation, 251
kernel, 262, 274
Laplacian filter, 275
lattice-wombling, 262
moving windows, 255, 262
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scale-space</td>
<td>275</td>
</tr>
<tr>
<td>triangulation-wombling</td>
<td>267</td>
</tr>
<tr>
<td>wavelet transform analysis</td>
<td>273</td>
</tr>
<tr>
<td>boundary statistics</td>
<td>270</td>
</tr>
<tr>
<td>direct overlap O_s</td>
<td>272</td>
</tr>
<tr>
<td>maximum diameter</td>
<td>270</td>
</tr>
<tr>
<td>maximum length</td>
<td>270</td>
</tr>
<tr>
<td>mean diameter</td>
<td>270</td>
</tr>
<tr>
<td>mean length</td>
<td>270</td>
</tr>
<tr>
<td>mean minimum nearest distance O_{1}</td>
<td>272</td>
</tr>
<tr>
<td>mean minimum nearest distance O_{2}</td>
<td>272</td>
</tr>
<tr>
<td>number of boundaries</td>
<td>270</td>
</tr>
<tr>
<td>number of singletons</td>
<td>270</td>
</tr>
<tr>
<td>overall minimum nearest distance O_{12}</td>
<td>272</td>
</tr>
<tr>
<td>overlap statistics</td>
<td>272</td>
</tr>
<tr>
<td>superfluity statistic</td>
<td>270</td>
</tr>
<tr>
<td>box size</td>
<td>112</td>
</tr>
<tr>
<td>branching linear structures</td>
<td>343</td>
</tr>
<tr>
<td>brousse tigrée</td>
<td>9, 40, 320, 323, 343</td>
</tr>
<tr>
<td>butterfly effect</td>
<td>346</td>
</tr>
<tr>
<td>catastrophe theory</td>
<td>39</td>
</tr>
<tr>
<td>causality</td>
<td>22, 31, 189, 191, 206, 218, 319</td>
</tr>
<tr>
<td>cellular automata models</td>
<td>350</td>
</tr>
<tr>
<td>change of support</td>
<td>163</td>
</tr>
<tr>
<td>chaos</td>
<td>31, 39, 42, 346–348</td>
</tr>
<tr>
<td>attractor</td>
<td>346</td>
</tr>
<tr>
<td>bifurcation</td>
<td>347</td>
</tr>
<tr>
<td>edge</td>
<td>348</td>
</tr>
<tr>
<td>phase space diagram</td>
<td>347</td>
</tr>
<tr>
<td>spatial</td>
<td>347, 349–350</td>
</tr>
<tr>
<td>spatio-temporal</td>
<td>346, 349</td>
</tr>
<tr>
<td>strange attractor</td>
<td>347</td>
</tr>
<tr>
<td>temporal</td>
<td>347, 350</td>
</tr>
<tr>
<td>checkerboard patterns</td>
<td>297</td>
</tr>
<tr>
<td>chess moves, see connectivity</td>
<td></td>
</tr>
<tr>
<td>circle score maps</td>
<td>118</td>
</tr>
<tr>
<td>circuit theory</td>
<td>79</td>
</tr>
<tr>
<td>circumcircle method</td>
<td>116, 135, 371</td>
</tr>
<tr>
<td>bivariate</td>
<td>117</td>
</tr>
<tr>
<td>multivariate</td>
<td>119</td>
</tr>
<tr>
<td>Clementsian model</td>
<td>35</td>
</tr>
<tr>
<td>Clifford et al.’s correction</td>
<td>183, 220</td>
</tr>
<tr>
<td>climax</td>
<td>35</td>
</tr>
<tr>
<td>clonal plant</td>
<td>46, 62, 323–324, 333, 336, 342</td>
</tr>
<tr>
<td>cluster</td>
<td>169</td>
</tr>
<tr>
<td>change detection</td>
<td>323</td>
</tr>
<tr>
<td>membership</td>
<td>247, 250</td>
</tr>
<tr>
<td>size</td>
<td>103</td>
</tr>
<tr>
<td>cluster analysis, see clustering</td>
<td></td>
</tr>
<tr>
<td>clustering algorithms</td>
<td>245</td>
</tr>
<tr>
<td>fuzzy classification</td>
<td>249</td>
</tr>
<tr>
<td>fuzzy c-means</td>
<td>250</td>
</tr>
<tr>
<td>fuzzy k-means</td>
<td>250</td>
</tr>
<tr>
<td>hierarchical agglomerative</td>
<td>245</td>
</tr>
<tr>
<td>k-means</td>
<td>247</td>
</tr>
<tr>
<td>spatial</td>
<td>249, 267</td>
</tr>
<tr>
<td>spatial k-means</td>
<td>250</td>
</tr>
<tr>
<td>coefficients</td>
<td></td>
</tr>
<tr>
<td>correlation</td>
<td>211, 220</td>
</tr>
<tr>
<td>determination</td>
<td>196</td>
</tr>
<tr>
<td>dilation</td>
<td>202</td>
</tr>
<tr>
<td>dissimilarity</td>
<td>183, 192, 246, 289, 291, 293, 301</td>
</tr>
<tr>
<td>distance</td>
<td>86, 183, 192</td>
</tr>
<tr>
<td>Jaccard</td>
<td>292, 301</td>
</tr>
<tr>
<td>Pearson correlation</td>
<td>145, 184, 306</td>
</tr>
<tr>
<td>regression</td>
<td>172</td>
</tr>
<tr>
<td>scaling</td>
<td>202</td>
</tr>
<tr>
<td>spatial autocorrelation</td>
<td>145–146</td>
</tr>
<tr>
<td>cold spots</td>
<td>167–168</td>
</tr>
<tr>
<td>community</td>
<td>34–36, 41, 280, 286, 300, 317, 319</td>
</tr>
<tr>
<td>unit</td>
<td>254</td>
</tr>
<tr>
<td>competition</td>
<td>376</td>
</tr>
<tr>
<td>complement (graph)</td>
<td>84</td>
</tr>
<tr>
<td>complementary combinations</td>
<td>297</td>
</tr>
<tr>
<td>complete census</td>
<td>89, 91, 283</td>
</tr>
<tr>
<td>complete graph</td>
<td>84, 86, 395</td>
</tr>
<tr>
<td>complete independence model</td>
<td>207</td>
</tr>
<tr>
<td>complete randomization</td>
<td>191, 242, 265</td>
</tr>
<tr>
<td>complete spatial randomness</td>
<td>23–24, 26, 44, 45, 50, 89, 106, 141, 168</td>
</tr>
<tr>
<td>concept</td>
<td></td>
</tr>
<tr>
<td>alternate stable states</td>
<td>39</td>
</tr>
<tr>
<td>constellation</td>
<td>39</td>
</tr>
<tr>
<td>cyclic change</td>
<td>36</td>
</tr>
<tr>
<td>mosaic-cycle</td>
<td>36–37, 39</td>
</tr>
<tr>
<td>self-organization</td>
<td>39–40</td>
</tr>
<tr>
<td>Condit’s Ω functions</td>
<td>371</td>
</tr>
<tr>
<td>conditional annealing</td>
<td>171, 178</td>
</tr>
<tr>
<td>confidence envelope</td>
<td>226</td>
</tr>
<tr>
<td>connectance</td>
<td>86</td>
</tr>
<tr>
<td>connectedness</td>
<td>86</td>
</tr>
<tr>
<td>connectivity</td>
<td>70, 87</td>
</tr>
<tr>
<td>algorithms</td>
<td>141</td>
</tr>
<tr>
<td>bishop</td>
<td>57, 142</td>
</tr>
<tr>
<td>functional</td>
<td>48, 363</td>
</tr>
<tr>
<td>matrix</td>
<td>56, 141, 183, 189, 195–196, 359</td>
</tr>
</tbody>
</table>

Index 427
connectivity (cont.)
point, 4, 7, 21, 24, 46, 53–54, 64, 68, 84, 88-89, 91, 105, 116, 286, 354
population, 14
qualitative, 4, 65, 109, 140–141, 156, 168,
178, 262
quantitative, 4, 10, 54, 65, 88, 106, 109–110, 133,
140, 144, 172, 198, 203, 221, 249, 255, 262,
291, 372
spaced, 14, 115, 144, 195, 240, 259, 267, 372
sparse, 14
surface, 4, 140
transect, 4, 14, 273
Delaunay graph, see graph theory
Delaunay triangulation, 50, 53, 116, 267, 315
delineating boundaries, see boundary detection
design matrix, 189
deterministic structural function, 152
detrending data, 10, 22, 203, 213
Diggle’s \(F \) function, 91, 100
bivariate, 96
Diggle’s \(G \) function, 90, 100
bivariate, 96
directional, 253
directional angle-based spatial neighbours, 59
directional connectivity matrix, 196
directional-based neighbors, 61
directionality, 231, 334 see anisotropy, see angle
Dirichlet polygons, see Voronoi polygons
Dirichlet tessellation, 115
discriminant functions, 255
dispersal, 7–8, 37, 83, 206, 313
corridors, 74, 81, 308, 353
routes, 74
dispersion index, 124
distance algorithms, 55
distance as key factor, 362
distance class
connectivity matrix, 57
equal frequency, 59
equidistant, 59
matrix, 150, 185
distance decay, 8
distance interval, 8
distance to crowding, 131
distance to independence, 214, 239, 242, 362
distance to regularity, 131
distance to the mainland, 303
distance to the nearest neighbour, 303

data, see sampling, see pilot study
accuracy, 4, 12
censused, 88
continuous, 22, 133–134, 140, 156, 158, 180, 230, 256,
261–262, 320
detrending, 10
discrete, 4, 140, 230, 320, 325
ecological, 4
grid, see data, lattice
lattice, 14, 54, 57, 59, 142, 144, 198, 230, 232, 262, 268
missing, 179–180
model, 194, 392
multivariate, 39, 65, 100, 182–183, 185, 192, 262

--

convex hull, 77, 340
correlation, 7, 144, 146, 181, 183, 210–211, 215, 218–221, 292,
380
linear, 183
Mantel tests, 184
matrix, 215, 380, 393
partial, 189
Pearson, 144
serial, 207, 226
spatially autocorrelated variables, 182
Spearman, 186, 345, 381
spurious, 22, 189
correlogram
directional, 152
Mantel, 189
modified, 345, 380
omnidirectional, 372
one-dimensional, 150
spatial, 147, 150, 183
covariance, 20, 118, 127
covariance matrix, 174
covariate variables, 206
Cressie’s correction factor, 214
critical scales, 159
cross-correlation, 164, 344, 380–381
cross-correlogram, 82
cross-validation, 156, 175
cross-variance, 164
cyclic autocorrelation, 223

distance-based MEM (dbhMEM) 196
formally named PCNM, 196

distance-based spatial neighbours, 57
diversity, 278–279, 316, 364
α-diversity, 284
aspatial, 278, 294
β-diversity 195, 279, 287, 388
biological, 363
combination, 303
combinatorial, 298, 300–301
compositional, 302–303
directional, 291
discrete natural sampling units, 283
ecological, 296
effective number of species, 285
entropy, 301
evenness, 280, 284
first-order, 283, 288, 293
florula, 299, 301
γ-diversity 293
genetic, 313
Gleason, 290, 300
graph, 49
Hill’s index, 285
indices, 300
richness, 284
Ripley’s K multivariate, 315
sampling unit, 280
second-order, 281
Shannon-Weaver index, 284
Simpson’s index, 119, 278
Sørensen index, 292
spatial, 278–279, 285, 314
spatial heterogeneity, 279
spatial location, 280
species, 119, 278
species combination, 296
species composition, 283, 296
species turnover, 280, 291
taxonomic distances, 312
taxonomic distinctness index, 311
temporal, 315
turnover, 290
Dixon’s method, 100–101, 371
drift, 156, 175, 337
dummy variables, 189
Durbin’s autoregressive procedure, 150
Dutilleul’s correction, 183
dyadic grid, 196
dynamic graphs, 351
ecological boundaries, 251
ecological data, 4, 7, 156
ecological fallacy, 163
ecological hypotheses, 3, 22, 80
ecological memory, 207, 358
ecological processes, 32–33, 159
ecological questions, 362
ecotones, 251
edge detection, see boundary detection
degree effect, 16, 59
degree enhancement, see boundary detection
effective number of combinations, 300
effective sample size, 182, 213–214, 220–221, 223, 236, 294
adjustment, 214
eigenanalysis, 128–129, 192, 196
asymmetric eigenvector map (AEM), 196
eigenfunction, 195
eigenvalues, 222, 365
eigenvector, 71, 128–129, 192
Moran’s eigenvector maps (MEM), 195
orthogonal, 195
spatial, 195, 197, 205
empirical variogram, 195
empty space function, 67, 95
entropy, 301
environmental gradient, 253, 261, 287, 289
environmental gradients, 32–33, 280
epidemiology, xii, 98, 170, 326
ergodic covariance, 156
experiment-wise, 339
Kriging, 175–176
measurement, 154, 178
spatial, 230
spatial regression, 233
Type I, 189, 191, 206, 213, 225, 233, 241
Type II, 369
Euclidean distance, 183, 192, 235
classes, 144
matrix, 189
minimum, 272
squared, 255
Euclidean space, 57, 158
event–event distance, 91
events, 88
event-to-nearest-event, 116
event-to-nearest-event function, 100
experimental
design, 239–241
units, 239, 241, 338, 340
Exploratory Spatial Data Analysis (ESDA), 182, 234
exponential decay, 281
exponential distribution, 72
feedbacks
loops, 37
negative, 37
positive, 37
reaction switch, 38
switch, 37
two-sided switches, 38
Fibonacci spiral, 240
partial, 240
fibre pattern analysis, 61
angles, 61
autocorrelation, 215, 231, 337, 381
autoregressive, 210, 214, 389
Bézier curves, 65, 67
bivariate, 65
branching curves, 66
curving fibres, 65
diversity, 283
filtering, 380
first-order, 8
heterogeneity, 144
marked, 65
moment, 152
moving average, 381
moving average model, 215
neighbours, 50, 53, 80, 82, 285, 308, 359, 384, 395
parallelism, 67
residuals, 380
statistics, 21
temporal, 343, 380
fixed effect, 237
Fourier analysis, 135
transform, 133, 199
fractal dimension, 158, 338, 358
self-similarity, 158
fragmentation, 73, 133, 323, 331
Friedman’s measure of concordance, 345
functional connections, 365
fuzzy set theory, 250
gap circle, 116–117
gap size, 37, 117, 259
Gaussian random field, 393
Geary’s c, 146, 153
Geary’s c
local, 165
geographically weighted regression (GWR)
adaptive kernel, 234
fixed kernel, 234
Geostatistics, 152, see variography, see variogram, see Kriging
Getis’ G
local, 167
Getis statistics, 371
sliding box, see moving window
global analysis, 93
global spatial analysis, 145
global spatial statistics, 10, 20
gradient, 156, 253
graph theory, 48
aspatial, 48
bipartite, 70
comparison, 80, 82
complete, 73, 81, 101, 315
component, 72
connected, 87
digraph, 49, 70
directed, 49, 85
distance, 85
dynamic, 351
edges, 46, 84
edge dynamic, 351
empty, 315
footprint, 77
functional network, 73
geometric, 74, 85
graph-of-graphs, 71, 84
hierarchy, 82
interior nodes, 77
leaf, 49, 76
least-cost links, 78
least-cost paths, 80
minimum planar, 78, 85
modularity, 71
modules, 71
nearest neighbour (NN), 81
Index

<table>
<thead>
<tr>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>network, 49</td>
</tr>
<tr>
<td>node dynamic, 351</td>
</tr>
<tr>
<td>nodes, 46, 84</td>
</tr>
<tr>
<td>path, 47–48, 73</td>
</tr>
<tr>
<td>planar, 73, 84</td>
</tr>
<tr>
<td>planar, 73, 84</td>
</tr>
<tr>
<td>perimeter nodes, 77</td>
</tr>
<tr>
<td>random, 47, 72</td>
</tr>
<tr>
<td>ring, 72</td>
</tr>
<tr>
<td>scale-free, 72</td>
</tr>
<tr>
<td>signed, 70</td>
</tr>
<tr>
<td>small world, 72</td>
</tr>
<tr>
<td>spatial, 50, 85</td>
</tr>
<tr>
<td>spatial digraph, 85</td>
</tr>
<tr>
<td>subgraph, 51, 71, 85</td>
</tr>
<tr>
<td>topological, 48, 80</td>
</tr>
<tr>
<td>tree, 47, 85</td>
</tr>
<tr>
<td>Ulam tree, 55</td>
</tr>
<tr>
<td>graph evolution, 357</td>
</tr>
<tr>
<td>graph metrics</td>
</tr>
<tr>
<td>betweenness, 86</td>
</tr>
<tr>
<td>centrality of a node, 86</td>
</tr>
<tr>
<td>cut-edge, 73, 84</td>
</tr>
<tr>
<td>cut-point, 73, 84</td>
</tr>
<tr>
<td>cycle, 85</td>
</tr>
<tr>
<td>degree of a node, 71, 73, 85–86</td>
</tr>
<tr>
<td>degree of the node, 49</td>
</tr>
<tr>
<td>diameter, 70, 86</td>
</tr>
<tr>
<td>diameter of a graph, 74</td>
</tr>
<tr>
<td>eccentricity, 74</td>
</tr>
<tr>
<td>edge connectivity, 73</td>
</tr>
<tr>
<td>index of dispersal flux, 76</td>
</tr>
<tr>
<td>path, 85</td>
</tr>
<tr>
<td>path length, 82, 85, 315, 340</td>
</tr>
<tr>
<td>recruitment index, 76</td>
</tr>
<tr>
<td>traversability, 76</td>
</tr>
<tr>
<td>gravity model, 77</td>
</tr>
<tr>
<td>Griffith’s space-time index, 321, 325</td>
</tr>
<tr>
<td>hierarchy of neighbours, 286</td>
</tr>
<tr>
<td>hierarchy of networks, 286</td>
</tr>
<tr>
<td>home range, 341</td>
</tr>
<tr>
<td>homogeneity, 40, 106, 315</td>
</tr>
<tr>
<td>homogeneous, 17, 44–45, 264</td>
</tr>
<tr>
<td>homogeneous areas, 11–12, 20, 22, 244, 274, 368</td>
</tr>
<tr>
<td>hot spots, 167–168</td>
</tr>
<tr>
<td>hypothesis testing, 81, 395</td>
</tr>
<tr>
<td>independent and identically distributed (i.i.d.), 20, 393</td>
</tr>
<tr>
<td>independent variables, 8, 22, 80, 172, 280</td>
</tr>
<tr>
<td>index of dispersion, 123</td>
</tr>
<tr>
<td>individualistic model, 254</td>
</tr>
<tr>
<td>induced autoregression model, 209</td>
</tr>
<tr>
<td>inferential tests, 15, 191, 205–207, 213, 364</td>
</tr>
<tr>
<td>information theory, 292</td>
</tr>
<tr>
<td>inherent autoregression model, 208</td>
</tr>
<tr>
<td>inhomogeneity, 20, 106</td>
</tr>
<tr>
<td>inhomogeneous, 106, 108–109</td>
</tr>
<tr>
<td>Integrated Nested Laplace Approximation (INLA), 235, 390</td>
</tr>
<tr>
<td>intrinsic random function of order (k), 176</td>
</tr>
<tr>
<td>inverse distance, 59</td>
</tr>
<tr>
<td>isolation by distance, 41</td>
</tr>
<tr>
<td>isotropy, 9, 14, 44, 57, 59, 146, 170, 175, 196, 275–276, 372</td>
</tr>
<tr>
<td>join count statistics, 141</td>
</tr>
<tr>
<td>(k)-categories, 142</td>
</tr>
<tr>
<td>kernel function, 234</td>
</tr>
<tr>
<td>Knox’s approach, see Mantel tests</td>
</tr>
<tr>
<td>Kriging</td>
</tr>
<tr>
<td>blocked, 175</td>
</tr>
<tr>
<td>co-Kriging, 164, 177</td>
</tr>
<tr>
<td>indicator function, 156, 178</td>
</tr>
<tr>
<td>multivariate 178</td>
</tr>
<tr>
<td>nonlinear 176</td>
</tr>
<tr>
<td>ordinary 175</td>
</tr>
<tr>
<td>punctual, 175</td>
</tr>
<tr>
<td>stratified 177</td>
</tr>
<tr>
<td>three-dimensional, 175</td>
</tr>
<tr>
<td>universal 175</td>
</tr>
<tr>
<td>variance, 174</td>
</tr>
<tr>
<td>lack of independence, 8, 126, 145, 206, 243, 320, 340, 360, 365, 380</td>
</tr>
<tr>
<td>lack of linear independence, 365</td>
</tr>
<tr>
<td>lacunarity, 112, 125, 133, 323, 330</td>
</tr>
<tr>
<td>lag</td>
</tr>
<tr>
<td>time, 344</td>
</tr>
</tbody>
</table>
lagged covariates, 229
Lagrangian multiplier, 174
landscape, 9, 14, 35
 connectivity, 70, 73, 85
corridors, 79
ecology, 73
fragmented, 79, 370
genetics, 77
graphs, 74
indices, 10
location, 14
memory, 31, 39, 358
metrics, 244, 364
latent effects, 394
least-cost matrix, 195
lichen, 40
lichen mosaic analysis, 325
linear, 194
 coincidence, 384
collinear, 66, 194
 combinations, 128
correlation, 144, 183
dependence, 210, 212–213
 equations, 173
events, 112, see fibre pattern analysis
 features, 62, 385
 fibre, 62
interpolation, 172
 nonlinear, 172, 176, 186, 234, 280, 386
 nonlinear responses, 37
relationship, 192
response, 386
structure, 382
trend, 10, 125, 172, 230, 378
local analysis, 93
local indicator for categorical data (LICD), 168
local indicator of spatial association (LISA), 164
local spatial statistics, 10, 20, 164
log-likelihood model, 191
log-likelihood ratio, 285
log-likelihood ratio G, 222
Lyapunov exponent, 348
macrolecology, 2–3, 293
Mahalanobis distances, 255
Mantel tests
 Mantel correlogram, 189
 partial, 189
 spatial autocorrelation, 187
mark correlation, 110, 371
mark correlation function, 105
marked process, 88
Markov
 inhibition model, 137
 model, 222–223
 reversible model, 222
Markov chain
 first-order, 358
Markov Chain Monte Carlo (MCMC), 390
mark-recapture, 320
Matérn model, 235
metacommunity, 41, 46
metapopulation, 41, 46
metapopulations, 40
Minimum Spanning Tree, 195, 308, 315
mobile animal, 336
model
 data, 391, 393
 parameter, 392–393
 process, 391, 393
modifiable area unit problem (MAUP), 163
monotonic changes, 253
Monte Carlo, see randomization tests
Moran’s eigenvector maps (MEMs), 195
Moran’s I, 145, 196, 321
 bivariate, 164
 local, 164
Morisita’s index of clumping, 260
mosaic
 tile, 37
mosaic partitioning, 37
movement, 74, 79
 animal, 352–353, 355
 complete avoidance, 355
 complete randomness, 355
corridors, 79
costs, 78
crossing unusually rapid, 355
direction, 331
disease, 350
distance, 70
events, 331
 few crossings, 355
 path, 68, 70, 79
temporal units, 320
tortuosity, 340
 units, 333
moving average (MA), 171
moving window, 18, 88, 112, 124-125, 137, 152, 169, 215, 255,
262, 287, 289, 327, 329, 371
multiple regression, 191, 194
multiple regression on distance matrices (MRDM), 191
multiple testing, 146
multiscale analysis, 182
multiscale decomposition, 196
multiscale pattern analysis, 196
multispecies
analysis, 371
interactions, 71
pattern, 128
point pattern, 103
multivariate analysis, 261
multiscale spatial analysis, 205
pattern index, 103
point analysis, 100
Ripley’s K, 286

nearest neighbours, 48, 50, 89-90, 100-101, 141
event, 91
first-order, 80
function, 67
graph, 395
time and space, 396
neighbour networks (topological graph)
Delaunay triangulation, 52
Gabriel, 51
Minimum Spanning Tree, 51
mutually nearest neighbour pairs (MNN), 48, 50, 51
nearest neighbour (NN), 50
relative neighbourhood, 51
Ulam tree, 55
neighbourhood
autocorrelation, 230
effects, 396
filtre analysis, 65
matrix, 195
position, 229
search, 12, 165, 168, 172, 174
nested subsets, 303-305
nestedness, 291, 303, 305, 315, 317
network, see graph
dendritic, 235
network analysis, 72
noise, 255, 288, 275-276 see also random
non-parametric rank test, 340
nonrandom, 7, 9, 127, 280, 286
nonrandomness, 32, 98, 253, 302, 373
non-spatial, see aspatial
non-stationarity, 235, 241, 253, 376, 378, 386
non-stationarity point pattern analysis, 109
normal distribution approximation test, 146
null hypothesis, 108, 183
null model, 41, 44, 93
ordination, 192, 303
canonical correspondence analysis (CCA), 192
direct, 192
horseshoe effect, 291
multiscale (MSO), 128, 195, 371
partial CCA, 193
partial RDA, 193
principal components analysis (PCA), 128
redundancy analysis (RDA), 192
spatial principal components analysis (sPCA), 313
orthogonal spatial eigenvectors
surrogate predictors, 196
overdispersion, 376
partial correlation, 218, 221
partial Mantel tests, 342
partitioned variation, 234
partitioning diversity, 288
patch, 73, 244, 264
overlap, 116
patch size, 115, 117, 147, 323 see also spatial range, see also
zone of influence
patch-gap model, 37
patchiness, 7, 9-10, 16, 21, 32, 44, 147, 150, 196, 224, 239,
280-281, 291, 389
patchy, 41, 142, 196, 239-241, 289, 357, 362
path, 79, 82, 93, 334, 338, 340, 354-355
complexity, 354
least-cost, 77, 79-80
movement, 340
shortest, 86
path analysis, 189, 191
pattern, 6
aggregated, 7
association, 34
checkerboard, 308
overdispersed, 24
patchiness, 14
random, 7
repetitive, 14, 241
spatio-temporal, 349, 381
temporal, 35, 160
random paired quadrat frequency, 325
randomization
caterpillar, 30, 225
complete, 110
complete spatial, 29
restricted, 29, 61, 110, 126, 185, 190, 224
randomization tests, 24–25, 30, 67, 83, 126, 132, 158
bootstrap, 25, 224, 226, 242
jackknife, 225
toroidal shift, 16, 27, 224
torus distances, 16
randomly generated patterns, 18
randomness, 346
random-point-to-nearest event, 116
range, see spatial range
reference distribution, 25–26, 222, 224
refined nearest neighbour, 90, 99
regionalized variable theory, 152
regression, 227
aspatial, 377
generalized least-squares (GLS), 233
generalized linear mixed model (GLMM), 227
geofically weighted (GWR), 234
Kriging, 233
linear, 31, 174, 184, 189, 208, 218, 221, 227, 233, 235, 344, 394
multiple, 172
non-spatial, 237
polynomial, 172
spatial, 227, 234
spatial error, 233
spatial lag, 230
repulsion (overdispersion), 50
re-sampling, see randomization tests
residual sums of squares, 191
residuals, 10, 20, 22, 117, 189, 234, 367, 381
 Freeman–Tukey standardized residual, 116, 223, 260, 297, 339, 381
spatial, 152, 237
spatial structure, 21
standardized, 118, 223
resource selection function, 340
response variable, 206
restricted randomization, 265, 304–305
Ripley’s K, 24, 62, 91, 95, 99, 106, 371
 bivariate, 96–97, 112
 edge effects, 62
 inhomogeneous, 106
multivariate, 286
three dimensions, 115
Ripley’s L, 103
robust, 207, 224, 236, 370
robustness, 147, 175, 214, 221, 370
rooted trees, 358
runs test, 355
sample data, 140, 195
sample size, 11, 160, 184–191, 213, 321, 364, 368–370
sampling
 extent, 11
 grain, 11
 sampling units, 4
 strategy, 14
sampling design, 1, 10–11, 16, 27, 140, 159, 239
 random, 160
 spacing, 160
 systematic, 15
sampling designs, 251
sampling unit, 9, 11, 14, 281, 370, 392
sampling unit size, 160
scale, 9, 281, 361
scales of pattern, 376
scalogram, 203
scan statistics, 98, 168, 287
search window, 21, 168–169
second-order, 8, 99, 116
 derivatives, 275
 moment, 152
 neighbours, 53, 82, 314
 nodes, 71
 point pattern analysis, 91
 polynomial, 172
 statistics, 8
segregation, 118, 376, 382
 index, 100
 semi-variance, 153
 bivariate, 164
 semi-variogram, 153
 signed graphs, 351
 significance tests, 120
 similarity matrix, 196
 smooth, 171–172, 230, 235, 267
 spatial pattern, 175
 smoothed, 156, 170, 255
 smoothing, 105, 275
 space, 230, 279
 confounding variable, 31
diagnostic indicator, 31
effects of space, 207
space (cont.)
 predictor variable, 31
 spatial surrogate, 31
 statistical nuisance, 31
 surrogate predictor, 194
spatial
 adjacency, 245, 247
 aggregation, 31, 141
 arrangement, 291
 association, 141
 autocorrelation, 4, 8, 59, 82, 160, 394
 autocovariance, 145
 clustering, 249, 267
 clusters, 244, 247
 component, 317
 connectivity, 57
 contingency, 194, 207
 correlogram, 147
 covariance, 8, 152
 dependence, 4, 8
 diversity, 278–279, 285, 314
 edge, 396
 extent, 12
 extrapolation, 2, 205
 grain, 293
 heterogeneity, 9
 homogeneity, 9
 inhibition, 7
 interaction, 2, 30
 interpolation, 2
 interval, 59
 lag, 8, 15, 59, 153, 211, 215, 361
 legacy, 194
 mosaic, 39–40
 partitioning, 2, 244, 317
 regression, 2, 227
 repulsion, 141
 resolution, 11
 scale, 9
 series, 207
 structure, 2, 4, 30
 variance, 152
spatial analysis by distance indices (SADIE), 131
 absent, 31
 bivariate, 164
 boundary, 260
 coefficients, 145
 false, 8
 inherent, 8, 145, 362
 negative, 31
 positive, 126, 370
 significance, 146
 true, 8
spatial autocovariance, 230
spatial dependence, 7, 15, 27, 145, 281, 362
 induced, 8, 145, 206
spatial error models (SEM), 230
spatial extent, 12, 164, 199, 293, 368
spatial filtering, 230
conditional autoregressive models (CAR), 232
Moran’s eigenvector maps (MEM), 233
moving average models (MA), 232
simultaneous autoregressive models (SAR), 231
spatial graphs, 69, 101, 292, 314, 396
spatial independence model, 208
spatial interpolation, 170
 inverse distance weighting, 171–172
 Kriging, 173
 proximity polygons, 171
 trend surface analysis, 171–172, 175
spatial neighbourhoods, 56
spatial neighbouring search, 59
spatial partitioning, see boundary detection
spatial sampling
 design, 14
 optimal, 11, 175
spatial scales, 40, 338, 365
spatial scan statistic, 168
spatial segregation hypothesis, 286
spatial statistics, 17, 364
 global, 2
 local, 2
spatial stochastic simulations, 178
spatial time series modelling, 381
spatial variance, 22, 156
 spatially contagious, 305
 spatially explicit temporal autocorrelation, 39
 spatially independent, 31
Spatial-Temporal Analysis of Moving Polygons (STAMP), 331
spatio-temporal
 analysis, 319, 323, 360, 379, 382
 anisotropy, 321
 association, 325, 327
 autocorrelation, 320–321, 339, 360, 376
<table>
<thead>
<tr>
<th>term</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaos</td>
<td>346, 349</td>
</tr>
<tr>
<td>clustering</td>
<td>327</td>
</tr>
<tr>
<td>clusters</td>
<td>325</td>
</tr>
<tr>
<td>data</td>
<td>77</td>
</tr>
<tr>
<td>digraph</td>
<td>356</td>
</tr>
<tr>
<td>dimensions</td>
<td>1, 329</td>
</tr>
<tr>
<td>distances</td>
<td>320</td>
</tr>
<tr>
<td>domains</td>
<td>11</td>
</tr>
<tr>
<td>graph</td>
<td>350-353, 357, 359, 395-396</td>
</tr>
<tr>
<td>join count</td>
<td>324</td>
</tr>
<tr>
<td>relationship</td>
<td>183</td>
</tr>
<tr>
<td>resolution</td>
<td>9</td>
</tr>
<tr>
<td>Ripley’s K</td>
<td>327</td>
</tr>
<tr>
<td>scales</td>
<td>1, 11, 16, 244, 365, 368</td>
</tr>
<tr>
<td>scan statistics</td>
<td>170, 329</td>
</tr>
<tr>
<td>stationarity</td>
<td>375</td>
</tr>
<tr>
<td>statistics</td>
<td>359</td>
</tr>
<tr>
<td>trajectory</td>
<td>350</td>
</tr>
<tr>
<td>spatio-temporal autoregressive (STAR)</td>
<td>393</td>
</tr>
<tr>
<td>spatio-temporal autoregressive integrated moving average (STARIMA)</td>
<td>381</td>
</tr>
<tr>
<td>spatio-temporal graphs</td>
<td>355</td>
</tr>
<tr>
<td>disease spread</td>
<td>355</td>
</tr>
<tr>
<td>species association</td>
<td>286</td>
</tr>
<tr>
<td>species associations</td>
<td>295</td>
</tr>
<tr>
<td>species composition</td>
<td>289</td>
</tr>
<tr>
<td>species equivalents</td>
<td>288</td>
</tr>
<tr>
<td>species replacement</td>
<td>254</td>
</tr>
<tr>
<td>species response</td>
<td></td>
</tr>
<tr>
<td>unimodal curve</td>
<td>33</td>
</tr>
<tr>
<td>species turnover</td>
<td>258, 262, 264, 279, 290</td>
</tr>
<tr>
<td>species-area curve</td>
<td>279-280</td>
</tr>
<tr>
<td>spectral analysis</td>
<td>133, 135</td>
</tr>
<tr>
<td>spectral decomposition</td>
<td>195</td>
</tr>
<tr>
<td>spectral decomposition methods</td>
<td>195</td>
</tr>
<tr>
<td>spurious correlation, see correlation</td>
<td></td>
</tr>
<tr>
<td>square window</td>
<td>262, 264</td>
</tr>
<tr>
<td>stationarity</td>
<td>17, 21, 106, 144, 170, 195</td>
</tr>
<tr>
<td>intrinsic hypothesis</td>
<td>152</td>
</tr>
<tr>
<td>lack of stationarity</td>
<td>203, 234</td>
</tr>
<tr>
<td>quasi-stationarity</td>
<td>152</td>
</tr>
<tr>
<td>second-order</td>
<td>175</td>
</tr>
<tr>
<td>temporal</td>
<td>378</td>
</tr>
<tr>
<td>weak stationarity</td>
<td>152</td>
</tr>
<tr>
<td>stationary</td>
<td>20, 43</td>
</tr>
<tr>
<td>statistical testing</td>
<td>207, 370</td>
</tr>
<tr>
<td>stochastic</td>
<td>41, 43, 171, 178, 346, 348</td>
</tr>
<tr>
<td>stochastic disturbances</td>
<td>34</td>
</tr>
<tr>
<td>stochastic spatial modelling</td>
<td>389</td>
</tr>
<tr>
<td>structure</td>
<td>6</td>
</tr>
<tr>
<td>Sturges’ rule</td>
<td>59</td>
</tr>
<tr>
<td>subareas</td>
<td>244</td>
</tr>
<tr>
<td>summary graph</td>
<td>352</td>
</tr>
<tr>
<td>surface pattern process</td>
<td>59</td>
</tr>
<tr>
<td>surface pattern processes</td>
<td>140</td>
</tr>
<tr>
<td>survey</td>
<td></td>
</tr>
<tr>
<td>design</td>
<td>241</td>
</tr>
<tr>
<td>symmetric matching coefficient</td>
<td>307</td>
</tr>
<tr>
<td>symmetric matrix</td>
<td>183, 196</td>
</tr>
<tr>
<td>synchronous cycles</td>
<td>343</td>
</tr>
<tr>
<td>synchrony</td>
<td>343-345, 380</td>
</tr>
<tr>
<td>spatial</td>
<td>344</td>
</tr>
<tr>
<td>Tavaré’s approach</td>
<td>222-223</td>
</tr>
<tr>
<td>temporal</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td>379</td>
</tr>
<tr>
<td>autocorrelation</td>
<td>321, 341, 343, 365, 380, 388</td>
</tr>
<tr>
<td>cycles</td>
<td>343, 379</td>
</tr>
<tr>
<td>dependence</td>
<td>393</td>
</tr>
<tr>
<td>dimensions</td>
<td>283</td>
</tr>
<tr>
<td>distance metric</td>
<td>357</td>
</tr>
<tr>
<td>edge</td>
<td>396</td>
</tr>
<tr>
<td>edge effects</td>
<td>328</td>
</tr>
<tr>
<td>explicit</td>
<td>374</td>
</tr>
<tr>
<td>graphs</td>
<td>351</td>
</tr>
<tr>
<td>implicit</td>
<td>374</td>
</tr>
<tr>
<td>label</td>
<td>352, 354</td>
</tr>
<tr>
<td>lag</td>
<td>361, 381</td>
</tr>
<tr>
<td>memory</td>
<td>359</td>
</tr>
<tr>
<td>network</td>
<td>351</td>
</tr>
<tr>
<td>non-stationarity</td>
<td>329</td>
</tr>
<tr>
<td>partitioning</td>
<td>315</td>
</tr>
<tr>
<td>sampling interval</td>
<td>340</td>
</tr>
<tr>
<td>scales</td>
<td>380</td>
</tr>
<tr>
<td>subsets</td>
<td>317</td>
</tr>
<tr>
<td>units</td>
<td>351</td>
</tr>
<tr>
<td>temporal autocorrelation</td>
<td>145</td>
</tr>
<tr>
<td>tessellation, see Voronoi polygons, see graph, see network, see Delaunay triangulation</td>
<td></td>
</tr>
<tr>
<td>tests for proportions</td>
<td>222</td>
</tr>
<tr>
<td>Thiessen polygons, see Voronoi polygons</td>
<td></td>
</tr>
<tr>
<td>three-dimensional</td>
<td>32, 73, 88, 116, 133, 135</td>
</tr>
<tr>
<td>threshold distance</td>
<td>69, 74, 79, 82, 93, 195-196, 286, 315, 376</td>
</tr>
<tr>
<td>tile</td>
<td>37</td>
</tr>
<tr>
<td>time lag</td>
<td>320, 344, 380, 395-396</td>
</tr>
<tr>
<td>time to independence</td>
<td>339-340</td>
</tr>
</tbody>
</table>
Index

Tobler’s Law, 7, 281, 362
topological algorithms, 50, 142
topological neighbours, see neighbour networks
topology, 2, 25, 47, 142, 286, 350
tortuosity path, 340
transition probabilities, 222
transition zone, 250, 252
travelling waves, 40, 321, 343, 345
trend surface analysis, 172
triangle window, 267
triangular window, 267
turnover, 291–292
underdispersion, 376

variance partitioning, 197
variance–covariance matrix, 128, 174, 210, 231–233
variance–mean ratio, 21
variance-to-mean, 131
variance-to-mean ratio, 123
variogram, 153, 174, 230, 239
directional, 156
experimental, 153
head locations, 156
linear, 155, 159
multivariate, 195
nugget effect, 154
omnidirectional, 372
sill, 154
spatial range, 154
spherical, 155–156, 196
tail locations, 156

theoretical, 155
variograms
bounded theoretical, 155
unbounded theoretical, 155
Variography, see variogram, see semi-variance,
see geostatistics, Kriging
Voronoi polygons, 50, 53, 77, 171, 285, 376
voxel, 133
wavelengths, 133
wavelet covariance analysis, 181
wavelets, 117–118, 134, 371
boater, 135
French top hat (FTH), 135
Haar, 135
Haar wavelet, 235
Mexican hat, 134
Morlet, 135
revised model, 235
Walsh transform, 134–135
wavelet transform, 134–135, 199, 201, 203, 274
wavelet variance, 134
weight matrix, 59, 145, 165, 232, 381
weighted matrix, 195
white noise, 213
window shape, 262
window size, 255
wombling, see boundary detection
zonal overlap, 34
zone of influence, 147, 363
zone of overlap, 254