Reinforced and Prestressed Concrete

Analysis and design with emphasis on the application of AS 3600-2009

Reinforced and Prestressed Concrete is the most comprehensive, up-to-the-minute text for students and instructors in civil and structural engineering, and for practising engineers requiring a full grasp of the latest Australian Concrete Structures Standard, AS 3600-2009.

Topics are presented in detail, covering the theoretical and practical aspects of analysis and design, with an emphasis on the application of AS 3600-2009. The first major national code to embrace the use of high-strength concrete of up to 100 MPa, the latest Standard also includes major technological upgrades, new analysis and design formulas, and new and more elaborate processes. This text addresses all such advances, and features chapters on bending, shear, torsion, bond, deflection and cracking, beams, slabs, columns, walls, footings, pile caps and retaining walls, as well as prestressed beams and end blocks plus an exposition on strut-and-tie modelling.

With an abundance of applied examples, *Reinforced and Prestressed Concrete* is an essential resource for both students and engineers in their continuing learning and professional education.

Instructors website www.cambridge.edu.au/academic/concrete

A secure and exclusive website containing the solutions to over 70 tutorial problems presented in the book. The website will also provide updates resulting from amendments to the AS 3600-2009 as they occur.

Yew-Chaye Loo, PhD, FIEAust, FICE, FIStructE, CPEng, NPER, CEng is Foundation Professor of Civil Engineering at Griffith University in Queensland. He is a former Dean of Engineering and Information Technology and is now Director, Internationalisation and Professional Liaison for the Science, Environment and Engineering Technology Group.

Sanaul Huq Chowdhury, PhD, MIEAust, CPEng, NPER is Lecturer in Structural Engineering and Mechanics at Griffith School of Engineering, Griffith University.

Reinforced and Prestressed Concrete

Analysis and design with emphasis on the application of AS 3600-2009

Yew-Chaye Loo Sanaul Huq Chowdhury

CAMBRIDGE

Cambridge University Press 978-0-521-14147-5 - Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS 3600-2009 Yew-Chaye Loo and Sanaul Huq Chowdhury Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press 477 Williamstown Road, Port Melbourne, Vic 3207, Australia

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521141475

© Yew-Chaye Loo, Sanaul Huq Chowdhury 2010

This publication is copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Cover design by Adrian Saunders Typeset by Aptara Corp Printed in Australia by Ligare Pty Ltd

A catalogue record for this publication is available from the British Library

National Library of Australia Cataloguing in Publication data

Loo, Yew-Chaye. Reinforced and prestressed concrete : analysis and design with emphasis on application of AS 3600-2009 / Yew-Chaye Loo, Sanaul Huq Chowdhury. 9780521141475 (pbk.) Includes bibliography and index. Reinforced concrete construction—Australia—Testing. Reinforced concrete construction—Standards—Australia. Reinforced concrete construction—Design and construction. Concrete products. Reinforced concrete—Specifications. Chowdhury, Sanaul Huq. 624.183410994

ISBN 978-0-521-14147-5 paperback

Reproduction and communication for educational purposes

The Australian *Copyright Act 1968* (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:

Copyright Agency Limited Level 15, 233 Castlereagh Street Sydney NSW 2000 Telephone: (02) 9394 7600 Facsimile: (02) 9394 7601 Email: info@copyright.com.au

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In Memory of Our Parents

Loo Khai Kee (1900–1989) Lau Ching (1902–1961) Shamsul Haque Chowdhury (1920–1999) Syeda Nurun Nahar Chowdhury (1930–2007)

vii

Contents

	Preface	page xvii
	Acknowledgements	XX
	Notation	xxi
	Acknowledgements for tables and diagrams	XXX
	Acronyms and abbreviations	xxxi
Part I	Reinforced concrete	1
1	Introduction	3
	1.1 Historical notes	3
	1.2 Design requirements	4
	1.3 Loads and load combinations	5
	1.3.1 Strength design	5
	1.3.2 Serviceability design	6
	1.3.3 Application	7
	1.4 Concrete cover and reinforcement spacing	7
	1.4.1 Cover	7
	1.4.2 Spacing	11
2	Design properties of materials	12
	2.1 Concrete	12
	2.1.1 Characteristic strengths	12
	2.1.2 Standard strength grades	13
	2.1.3 Initial modulus and other constants	13
	2.2 Steel	14
	2.3 Unit weight	17
3	Ultimate strength analysis and design for bending	18
	3.1 Definitions	18
	3.1.1 Analysis	18
	3.1.2 Design	18
	3.1.3 Ultimate strength method	18
	3.2 Ultimate strength theory	19
	3.2.1 Basic assumptions	19
	3.2.2 Actual and equivalent stress blocks	19
	3.3 Ultimate strength of a singly reinforced rectangular section	21
	3.3.1 Tension, compression and balanced failure	21
	3.3.2 Balanced steel ratio	22
	3.3.3 Moment equation for tension failure (under-reinforced	
	sections)	23
	3.3.4 Moment equation for compression failure (over-reinforce	ed 24
	sections)	24

viii __

Contents

		3.3.5 Effective moment capacity	25
		3.3.6 Illustrative example for ultimate strength of a singly	
		reinforced rectangular section	26
		3.3.7 Spread of reinforcement	28
	3.4	Design of singly reinforced rectangular sections	31
		3.4.1 Free design	31
		3.4.2 Restricted design	32
		3.4.3 Design example	33
	3.5	Doubly reinforced rectangular sections	35
		3.5.1 Criteria for yielding of A_{sc} at failure	36
		3.5.2 Analysis formulas	37
		3.5.3 Illustrative examples	39
		3.5.4 Other cases	41
		3.5.5 Summary	44
	3.6	Design of doubly reinforced sections	44
		3.6.1 Design procedure	44
		3.6.2 Illustrative example	47
	3.7	T-beams and other flanged sections	49
		3.7.1 General remarks	49
		3.7.2 Effective flange width	50
		3.7.3 Criteria for T-beams	54
		3.7.4 Analysis	54
		3.7.5 Design procedure	56
		3.7.6 Doubly reinforced T-sections	57
		3.7.7 Illustrative examples	58
	3.8	Nonstandard sections	61
		3.8.1 Analysis	61
		3.8.2 Illustrative example	63
	3.9	Continuous beams	65
	3.10	Problems	66
4	Defl	ection of beams and crack control	74
	4.1	General remarks	74
	4.2	Deflection formulas, effective span and deflection limits	75
		4.2.1 Formulas	75
		4.2.2 Effective span	/5
	1.2	4.2.3 Limits	76
	4.3	Short-term (immediate) deflection	76
		4.3.1 Effects of cracking	/6
		4.3.2 Branson's effective moment of inertia	/8
		4.3.3 Load combinations	80
		4.3.4 Illustrative example	80
		4.3.5 Cantilever and continuous beams	81
	4.4	Long-term deflection	83

CAMBRIDGE

Cambridge University Press 978-0-521-14147-5 - Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS 3600-2009 Yew-Chaye Loo and Sanaul Huq Chowdhury Frontmatter More information

		4.4.1 General remarks	83
		4.4.2 The multiplier method	83
		4.4.3 Illustrative example	84
	4.5	Minimum effective depth	85
	4.6	Total deflection under repeated loading	86
		4.6.1 Formulas	86
		4.6.2 Illustrative example	88
	4.7	Crack control	89
		4.7.1 General remarks	89
		4.7.2 Standard provisions	90
		4.7.3 Crack-width formulas and comparison of performances	92
	4.8	Problems	95
5	Ulti	mate strength design for shear	99
	5.1	Transverse shear stress and shear failure	99
		5.1.1 Principal stresses	99
		5.1.2 Typical crack patterns and failure modes	101
		5.1.3 Mechanism of shear resistance	102
		5.1.4 Shear reinforcement	103
	5.2	Transverse shear design	103
		5.2.1 Definitions	103
		5.2.2 Design shear force and the capacity reduction factor	105
		5.2.3 Maximum capacity	105
		5.2.4 Shear strength of beams without shear reinforcement	106
		5.2.5 Shear strength checks and minimum reinforcement	107
		5.2.6 Design of shear reinforcement	108
		5.2.7 Detailing	110
	5 2	5.2.8 Design example	110
	5.5	5.2.1. Champleon	113
		5.2.2 Design choose stroop	115
		5.3.3 Shoar stress capacity	117
		5.3.4 Shear plane reinforcement and detailing	115
		5.3.5 Design example	117
	54	Problems	118
6	Ulti	mate strength design for torsion	123
Ŭ	61	Introduction	123
	0.1	6.1.1. Origin and nature of torsion	123
		6.1.2 Torsional reinforcement	123
		6.1.3 Transverse reinforcement area and capacity	
		reduction factor	125
	6.2	Maximum torsion	126
	6.3	Checks for reinforcement requirements	127
		L	

Contents

__ ix

x		

Contents

	6.4	Design for torsional reinforcement	127
		6.4.1 Design formula	127
		6.4.2 Design procedure	128
		6.4.3 Detailing	129
		6.4.4 Design example	130
	6.5	Problems	134
7	Bon	d and stress development	136
	7.1	Introduction	136
		7.1.1 General remarks	136
		7.1.2 Anchorage bond and development length	136
		7.1.3 Mechanism of bond resistance	137
		7.1.4 Effects of bar position	138
	7.2	Design formulas for stress development	138
		7.2.1 Basic and refined development lengths for a	
		bar in tension	138
		7.2.2 Standard hooks and cog	141
		7.2.3 Deformed and plain bars in compression	142
		7.2.4 Bundled bars	142
	7.3	Splicing of reinforcement	143
		7.3.1 Bars in tension	143
		7.3.2 Bars in compression	143
		7.3.3 Bundled bars	144
		7.3.4 Mesh in tension	144
	7.4	Illustrative examples	144
		7.4.1 Example 1	144
		7.4.2 Example 2	145
	7.5	Problems	146
8	Slał	05	148
	8.1	Introduction	148
		8.1.1 One-way slabs	148
		8.1.2 Two-way slabs	149
		8.1.3 Effects of concentrated load	151
		8.1.4 Moment redistribution	152
	8.2	One-way slabs	153
		8.2.1 Simplified method of analysis	153
		8.2.2 Reinforcement requirements	155
		8.2.3 Deflection check	156
		8.2.4 Design example	157
	8.3	Two-way slabs supported on four sides	162
		8.3.1 Simplified method of analysis	162
		8.3.2 Reinforcement requirements for bending	168
		8.3.3 Corner reinforcement	169

CAMBRIDGE

Cambridge University Press 978-0-521-14147-5 - Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS 3600-2009 Yew-Chaye Loo and Sanaul Huq Chowdhury Frontmatter More information

	8	3.3.4	Deflection check	1	.70
	8	3.3.5	Crack control	1	.71
	8	3.3.6	Design example	1	71
	8.4 M	ultisr	pan two-way slabs	1	.74
	8	3.4.1	General remarks	1	.74
	8	3.4.2	Design strips	1	.76
	8	3.4.3	Limitations of the simplified method of analysis	1	.77
	8	3.4.4	Total moment and its distribution	1	78
	8	3.4.5	Punching shear	1	.79
	8	3.4.6	Reinforcement requirements	1	.80
	8	3.4.7	Shrinkage and temperature steel	1	.80
	8.5 Tł	ne ide	ealised frame approach	1	82
	8	3.5.1	The idealised frame	1	82
	8	3.5.2	Structural analysis	1	.83
	8	3.5.3	Distribution of moments	1	.84
	8.6 Pt	ınchi	ng shear design	1	.85
	8	3.6.1	Geometry and definitions	1	.85
	8	3.6.2	Drop panel and shear head	1	.86
	8	3.6.3	The basic strength	1	.86
	8	3.6.4	The ultimate strength	1	.87
	8	3.6.5	Minimum effective slab thickness	1	.87
	8	3.6.6	Design of torsion strips	1	.89
	8	3.6.7	Design of spandrel beams	1	.90
	8	8.6.8	Detailing of reinforcement	1	.91
	8	3.6.9	Summary	1	.91
	8.	6.10	Illustrative example	1	.92
	8.	6.11	Semi-empirical approach and layered finite		
			element method	1	.93
	8.7 Sla	ab de	sign for multistorey flat plate structures	1	.95
	5	3.7.1	Details and idealisation of a three-storey building	1	.95
	5	3.7.2	Loading details	1	.95
	5	3.7.3	Load combinations	1	.97
	6	5.7.4	Material and other specifications	1	.98
	5	3.7.5	Structural analysis and moment envelopes	1	.99
	5	5.7.0	Design strips and design moments	2	200
	5	5.7.7	Consign of column and middle strips	2	201
	c	0.7.0	Deinforcement detailing and levent	2	203
	0	7 10	Commonts	2	.00
	ð. gg D.	1.10		2	.07
۵	Colum	ne	115	2	.00
2	01 In	trodu	action	2	·10
	2.1 III	uout	ACC1011		

Contents

_ xi

xii __

Contents

	9.2	Centrally loaded columns	212
	9.3	Columns in uniaxial bending	213
		9.3.1 Strength formulas	213
		9.3.2 Tension, compression, decompression and	
		balanced failure	215
		9.3.3 Interaction diagram	217
		9.3.4 Approximate analysis of columns failing in compression	220
		9.3.5 Strengths between decompression and squash points	222
	9.4	Analysis of columns with an arbitrary cross-section	222
		9.4.1 Iterative approach	222
		9.4.2 Illustrative example	224
		9.4.3 Semi-graphical method	227
		9.4.4 Illustrative example	228
	9.5	Capacity reduction factor	229
	9.6	Preliminary design procedure	232
		9.6.1 Design steps	232
		9.6.2 Illustrative example	233
	9.7	Short column requirements	234
	9.8	Moment magnifiers for slender columns	235
		9.8.1 Braced columns	235
		9.8.2 Unbraced columns	236
	9.9	Biaxial bending effects	237
	9.10	Reinforcement requirements	239
		9.10.1 Limitations and bundled bars	239
		9.10.2 Lateral restraint and core confinement	239
		9.10.3 Recommendations	239
	9.11	Comments	240
	9.12	Problems	241
10	Wall	S	245
	10.1	Introduction	245
	10.2	Standard provisions	246
	10.3	Walls under vertical loading only	247
		10.3.1 Simplified method	247
		10.3.2 American Concrete Institute code provision	249
		10.3.3 New design formula	249
		10.3.4 Alternative column design method	250
	10.4	Walls subjected to in-plane horizontal forces	251
		10.4.1 General requirements	251
		10.4.2 Design strength in shear	251
		10.4.3 American Concrete Institute recommendations	252
	10.5	Reinforcement requirements	253
	10.6	Illustrative examples	253

CAMBRIDGE

Cambridge University Press 978-0-521-14147-5 - Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS 3600-2009 Yew-Chaye Loo and Sanaul Huq Chowdhury Frontmatter More information

	10.6.1 Example 1 load bearing wall	253
	10.6.1 Example 2 – tilt-up papel	255
	10.6.2 Example 3 – the new strength formula	255
	10.6.4 Example 4 – design shear strength	255
	10.7 Problems	258
11	Footings, pile caps and retaining walls	259
	11.1 Introduction	259
	11.2 Wall footings	260
	11.2.1 General remarks	260
	11.2.2 Eccentric loading	261
	11.2.3 Concentric loading	265
	11.2.4 Asymmetrical footings	265
	11.2.5 Design example	266
	11.3 Column footings	272
	11.3.1 General remarks	272
	11.3.2 Centrally loaded square footings	272
	11.3.3 Eccentric loading	274
	11.3.4 Multiple columns	276
	11.3.5 Biaxial bending	277
	11.3.6 Reinforcement requirements	278
	11.3.7 Design example	278
	11.4 Pile caps	285
	11.4.1 Concentric column loading	286
	11.4.2 Biaxial bending	289
	11.5 Retaining walls	291
	11.5.1 General remarks	291
	11.5.2 Stability considerations	293
	11.5.5 Active earth pressure	297
	11.5.4 Design subsoil pressures	299
	11.5.6 Load combinations	302
	11.5.7 Illustrative example	303
	11.6 Problems	316
Part II	Prestressed concrete	317
12	Introduction to prestressed concrete	319
	12.1 General remarks	319
	12.2 Non-engineering examples of prestressing	320
	12.2.1 Wooden barrel	320
	12.2.2 Stack of books	320
	12.3 Principle of superposition	321

Contents

_ xiii

xiv ___

Contents

Cambridge University Press 978-0-521-14147-5 - Reinforced and Prestressed Concrete: Analysis and Design with Emphasis on Application of AS 3600-2009 Yew-Chaye Loo and Sanaul Huq Chowdhury Frontmatter More information

12.4 Types of prestressing
12.4.1 Pretensioning
12.4.2 Posttensioning
12.5 Tensile strength of tendons and cables
12.6 Australian Standard precast prestressed concrete bridge
girder sections
13 Critical stress state analysis of beams
13.1 Assumptions
13.2 Notation
13.3 Loss of prestress
13.3.1 Standard provisions
13.3.2 Examples of prestress loss due to elastic
shortening of concrete
13.3.3 Effective prestress coefficient
13.3.4 Stress equations at transfer and after loss
13.4 Permissible stresses c and c_t

		13.3.4 Stress equations at transfer and after loss	334
	13.4	Permissible stresses c and c_t	335
	13.5	Maximum and minimum external moments	336
	13.6	Case A and Case B prestressing	339
		13.6.1 Fundamentals	339
		13.6.2 Applying Case A and Case B	340
	13.7	Critical stress state (CSS) equations	341
		13.7.1 Case A prestressing	341
		13.7.2 Case B prestressing	342
		13.7.3 Summary of Case A and Case B equations	343
	13.8	Application of CSS equations	344
	13.9	Problems	346
14	Criti	cal stress state design of beams	348
	14.1	Design considerations	348
	14.2	Formulas and procedures – Case A	349
		14.2.1 Elastic section moduli	349
		14.2.2 Magnel's plot for Case A	350
		14.2.3 Design steps	351
	14.3	Formulas and procedures – Case B	352
		14.3.1 Elastic section moduli	352
		14.3.2 Magnel's plot for Case B	352
		14.3.3 Design steps	353
	14.4	Design examples	353
		14.4.1 Simply supported beam	353
		14.4.2 Simple beam with overhang	357
		14.4.3 Cantilever beam	361

14.5 Problems

.

365

332 334

~			
(or	nter	nts	

__ xv

	_		
15	Ultimate str	ength analysis of beams	367
	15.1 Genera	l remarks	367
	15.2 Crackir	ng moment (M_{cr})	367
	15.2.1	Formula	367
	15.2.2	Illustrative example	368
	15.3 Ultimat	te moment (M_u) for partially prestressed sections	369
	15.3.1	General equations	369
	15.3.2	Sections with bonded tendons	370
	15.3.3	Sections with unbonded tendons	371
	15.4 Ductilit	ty requirements – reduced ultimate moment equations	372
	15.5 Design	procedure	372
	15.5.1	Recommended steps	372
	15.5.2	Illustrative example	373
	15.6 Nonrec	tangular sections	374
	15.6.1	Ultimate moment equations	374
	15.6.2	Illustrative example	375
	15.7 Probler	ns	377
16	End blocks	for prestressing anchorages	378
	16.1 Genera	l remarks	378
	16.2 Pretens	ioned beams	378
	16.3 Postten	sioned beams	380
	16.3.1	Bursting stress	380
	16.3.2	Spalling stress	381
	16.3.3	Bearing stress	382
	16.3.4	End blocks	382
	16.4 End blo	ock design	382
	16.4.1	Geometry	382
	16.4.2	Symmetrical prisms and design bursting forces	382
	16.4.3	Design spalling force	383
	16.4.4	Design for bearing stress	384
	16.5 Reinfor	cement and distribution	385
	16.6 Crack o	control	386
	Appendix A	Elastic neutral axis	387
	Appendix B	Critical shear perimeter	389
	Appendix C	Development of an integrated package for design of	
		reinforced concrete flat plates on personal computer	391
	Appendix D	Strut-and-tie modelling of concrete structures	398
	Appendix E	Australian Standard precast prestressed concrete bridge	
		girder sections	413
	References		416
	Index		422

xvii

Preface

Most of the contents of this book were originally developed in the late 1980s at the University of Wollongong, New South Wales. The contents were targeted towards third-year courses in reinforced and prestressed concrete structures. The book was believed useful for both students learning the subjects and practising engineers wishing to apply with confidence the then newly published Australian Standard AS 3600-1988. In 1995 and following the publication of AS 3600-1994, the contents were updated at Griffith University (Gold Coast Campus) and used as the learning and teaching material for the third-year course 'Concrete structures' (which also covers prestressed concrete). In 2002, further revisions were made to include the technical advances of AS 3600-2001. Some of the book's more advanced topics were used for part of the Griffith University postgraduate course 'Advanced reinforced concrete'.

In anticipation of the publication of the current version of AS 3600, which was scheduled for 2007, a major rewrite began early that year to expand on the contents and present them in two parts. The effort continued into 2009 which produced in Part I Reinforced concrete, inter alia, the new chapters on walls, as well as on footings, pile caps and retaining walls, plus an appendix on strut-and-tie modelling. In addition, a new Part II has been written, which covers five new chapters on prestressed concrete. The entire manuscript was then thoroughly reviewed and revised as appropriate following the publication of AS 3600-2009 in late December 2009.

In line with the original aims, the book contains extensive fundamental materials for learning and teaching purposes. It is also useful for practising engineers, especially those wishing to have a full grasp of the new AS 3600-2009. This is important, as the 2009 contents have been updated and expanded significantly, and for the first time, provisions for concrete compressive strength up to 100 MPa are included. The increase in concrete strength has resulted in major changes to many of the analysis and design equations.

Part I contains 11 chapters. An introduction to the design requirements and load combinations is given in Chapter 1, and the properties of and specifications for concrete and reinforcing steel are discussed in Chapter 2. Chapter 3 presents, in detail, the bending analysis and design of rectangular beams, T-beams and other flanged sections. Some significant attention is given to doubly reinforced members. Deflection and crack control are considered in Chapter 4, which also features a section on the effects of repeated loading. Also presented is a unified crack-width formula for reinforced and prestressed beams.

Chapter 5 details transverse and longitudinal shear design, and Chapter 6 presents the design procedure for torsion. Bond and stress development are treated in

Preface

xviii ___

Chapter 7, and Chapter 8 covers most of the practical aspects of slab analysis and

design. It also includes a separate section describing a design exercise that features the complete (multiple-load case) analysis of a three-storey flat-plate structure, as well as the detailed design of typical floor panels.

Chapter 9 deals with the analysis and design of columns, including the treatment of arbitrary cross-sections using numerical and semi-graphical methods. The new Chapter 10 examines the use of relevant strength design formulas for walls subjected to vertical axial loads, as well as under combined axial and horizontal in-plane shear forces. This is followed by the new Chapter 11, with an extensive and in-depth coverage of the design of wall and column footings, pile caps and retaining walls.

Part II contains five chapters. Prestressed concrete fundamentals, including pre and post-tensioning processes, are introduced in Chapter 12. Chapters 13 and 14 cover the critical stress state approach to the analysis and design of fully prestressed concrete flexural members, which ensures a crack-free and overstress-free service life for the members. The ultimate strength analysis and design of fully and partially prestressed beams are dealt with in Chapter 15. The final chapter (Chapter 16) presents the design of end blocks for prestressing anchorages.

Appendixes A and B present the formulas for computing the elastic neutral axes required in deflection analysis, and those for obtaining various critical punching shear perimeters used in flat plate design, respectively. The development of an integrated personal computer program package for the design of multistorey flat-plate systems is described in Appendix C. This may be useful to the reader who has an interest in computer applications. Appendix D highlights the essence of the strut-and-tie modelling approach; it also reviews the advances made in this topic in recent years. Finally, the Australian Standard precast I-girders and super T-girders for prestressed concrete bridge construction are detailed in Appendix E.

In all of the chapters and appendixes, the major symbols used in AS 3600-2009 are adopted. Unless otherwise specified, the term 'Standard' refers to AS 3600-2009 and all the clause numbers referred to in the text are those from AS 3600-2009. For ease of reading, a full notation is provided as well as a subject index.

For the student learning the subject of reinforced and prestressed concrete, sufficient fundamentals and background information are provided in each of the chapters. Most of the analysis and design equations are derived and presented in an explicit form. The practitioner of concrete engineering should find these equations easy to apply in their work. Illustrative and design examples are given throughout to assist the reader with the learning process and with their interpretation of the provisions of the Standard. For the convenience of students and the teachers alike, a collection of tutorial problems is included at the end of each relevant chapter. To assist teachers using the book for concrete engineering-related courses, an electronic solution manual is available and posted on a secure website (maintained and continuously updated by the authors).

Preface xix

The book is suitable for use in a university degree course that covers the analysis and design of reinforced and prestressed concrete structures. Selected topics may also be adopted in a postgraduate course in concrete engineering. The practising engineer wanting to apply the Australian Standard with confidence will also find the material helpful. In practice, the book can also serve as a reference manual for and user guide to AS 3600-2009.

> Yew-Chaye Loo Sanaul Huq Chowdhury

xx

Acknowledgements

The authors are deeply indebted to Dr Jeung-Hwan Doh, Lecturer in Concrete and Structural Engineering at Griffith School of Engineering, for his meticulous efforts in transforming the manual corrections and additions to the original manuscript into an electronic version. He also skilfully produced the first versions of many of the new drawings. The materials on 'Walls' were originally prepared by Associate Professor Sam Fragomeni in the early 2000s at Griffith University, were revised and updated by Dr Doh, and subsequently expanded by the authors into the new Chapter 10. Associate Professor Fragomeni, now at Victoria University, Victoria, and Dr Doh are fondly remembered for their contributions.

The peer-review process was patiently and professionally handled by Ms Debbie Lee, Publishing Manager at Cambridge University Press, Australia. Debbie also provided valuable editorial advice along the way. Under the direction of Ms Jodie Howell, Managing Editor, Academic & Professional, Cambridge University Press, the final editing work was done by Dr Eve Merton and Ms Carrie DeHaan from Biotext (Melbourne). The authors are grateful for their kind efforts, without which the book would have taken much longer to appear. To the six unnamed reviewers from academia and the profession, the authors wish to extend their sincere thanks and appreciation for their support and constructive suggestions, which have helped enrich the contents of the book. The contents of the Australian standard AS 3600-2009 and allied Standards are extensively quoted in this book. The authors are especially grateful to SAI Global for the permission to reproduce some of the recommended design data in tabulated form and in figures.

Notation

A_b	cross-sectional area of a reinforcing bar
A_{ct}	cross-sectional area of concrete in the tensile zone assuming the
	section is uncracked
A_g	gross cross-sectional area of a member
A _m	an area enclosed by the median lines of the walls of a single cell
A_p	cross-sectional area of prestressing steel
A_{pt}	cross-sectional area of the tendons in that zone, which will be
	tensile under ultimate load conditions
A_{s}	cross-sectional area of reinforcement
A_{sc}	cross-sectional area of compression reinforcement
A_{st}	cross-sectional area of tension reinforcement; the cross-sectional
	area of reinforcement in the zone that would be in tension under
	the design loads other than prestressing or axial loads
A _{st.min}	minimum cross-sectional area of reinforcement permitted in a
	beam in tension, or in a critical tensile zone of a beam or slab in
	flexure
A_{sv}	cross-sectional area of shear reinforcement
A _{sv.min}	cross-sectional area of minimum shear reinforcement
A_{sw}	cross-sectional area of the bar forming a closed tie
A_t	area of a polygon with vertices at the centre of longitudinal bars at
	the corners of the cross-section
A_{tr}	cross-sectional area of a transverse bar along the development
	length
A _{tr.min}	cross-sectional area of the minimum transverse reinforcement
	along the development length
A_1	bearing area
A_2	supplementary area
A_1/A_2	ratio of areas
а	distance; or the maximum nominal size of the aggregate; or depth
	of equivalent concrete stress block from the extreme compression
	fibre; or dimension of the critical shear perimeter measured
	parallel to the direction of M^*_{ν}
a _s	length of a span support
a_{v}	distance from the section at which shear is being considered to the
	face of the nearest support
b	width of a cross-section
b_c	width of the compression strut; or the smaller cross-sectional
	dimension of a rectangular column

xxii	Notation	
	h c	effective width of a compression face or flange of a member
	\mathcal{D}_{ef}	width of the shear interface: or width of a footing
	b_j	width of the web: or the minimum thickness of the wall of a
	D_W	hollow section
	C	force resulting from compressive stresses
	C	cover to reinforcing steel or tendons: or the permissible
	C	compressive stress
	(d	smaller of the concrete covers to the deformed bar or half the clear
	Ca	distance to the next parallel
	(+	permissible tensile stress
	\mathcal{D}	overall depth of a cross-section in the plane of bending
	D_1	overall depth of a spandrel beam
	D_{p}	diameter of circular column or the smaller dimension of
		rectangular column
	Df	greater dimension or length of a footing
	D _c	overall depth of a slab or drop panel
	d	effective depth of a cross-section
	dı dı	nominal diameter of a bar, wire or tendon
	d_{p}	depth of a compression strut: or the distance from the extreme
	u	compressive fibre of the concrete to the centraid of compressive
		reinforcement
	da	distance from the extreme compression fibre of the concrete to the
		centroid of the outermost layer of tensile reinforcement or tendons
		but for prestressed concrete members not less than 0.8D
	dam	mean value of the shear effective depth (d_{o}) averaged around the
	0.0m	critical shear perimeter
	d _n	distance from the extreme compressive fibre of the concrete to the
	тр	centroid of the tendons in that zone which will be tensile under
		ultimate strength conditions
	duc	distance of the plastic centre of a column from the extreme
	- pc	compressive fibre
	E_{c}	mean value of the modulus of elasticity of concrete at 28 days
	E _a	design action effect
	E_n	modulus of elasticity of tendons
	E_{s}	modulus of elasticity of reinforcement
	E_{u}	action effect due to ultimate earthquake load
	e	eccentricity of axial force from a centroidal axis; or the base of
		Napierian logarithms
	e_B	eccentricity of prestressing tendons or cables
	ea	additional eccentricity
	F_{BF}	horizontal pressure resultant for a retaining wall due to backfills
	DI	

Notation _____xxiii

F _{SL}	horizontal pressure resultant for a retaining wall due to surcharge load
$F^*{}_c$	absolute value of the design force in the compressive zone due to flexure
F_d	uniformly distributed design load, factored for strength or
	serviceability as appropriate
F _{def}	effective design service load per unit length or area, used in
	serviceability design
f	bending stress
fc.cal	calculated compressive strength of concrete in a compression strut
<i>f</i> _{cm}	mean value of cylinder strength
<i>f_{cmi}</i>	mean value of the in situ compressive strength of concrete at the
	relevant age
f_{cp}	compressive strength of concrete at transfer
f_{cs}	maximum shrinkage-induced tensile stress on the uncracked
	section at the extreme fibre at which cracking occurs
f_{cv}	concrete shear strength
fheel	subsoil pressure at the heel of a retaining wall
f_p	tensile strength of tendons
f_{py}	yield strength of tendons
fs	maximum tensile stress permitted in the reinforcement
	immediately after the formation of a crack
fsc	stress in the compression steel
f _{sy}	yield strength of reinforcing steel
f _{sy.f}	yield strength of reinforcement used as fitments
ftoe	subsoil pressure at the toe of a retaining wall
f_c	characteristic compressive (cylinder) strength of concrete
	at 28 days
f'_{ct}	characteristic principal tensile strength of concrete
f' ct.f	characteristic flexural tensile strength of concrete
G	action effect due to dead load
g	dead load, usually per unit length or area
<i>S</i> _p	permanent distributed load normal to the shear interface per unit
	length (N/mm)
Н	height of a retaining wall; or the prestressing force
H_w	overall height of a wall
H_{we}	effective height of a wall
H_{wu}	unsupported height of a wall
I _c	second moment of area of a column
I _{cr}	second moment of area of a cracked section with the
-	reinforcement transformed to an equivalent area of concrete
I _{ef}	effective second moment of area

xxiv	Notation	
	I_f	second moment of area of a flexural member
	Ig	second moment of area, of the gross concrete cross-section about
		the centroidal axis
	I _{rep}	equivalent moment of inertia at the T^{th} loading cycle
	J_t	torsional modulus
	Κ	factor that accounts for the position of the bars being anchored
		with respect to the transverse reinforcement
	Ka	active earth pressure coefficient
	K_p	passive earth pressure coefficient
	k	coefficient, ratio or factor used with and without numerical
		subscripts
	k_A , k_B , k_C	factors for calculating ϕ for backfill materials which are function
		of the angularity, grading and density of the backfill particles
	k_R	amplification factor
	k_{co}	cohesion coefficient
	k_{cs}	factor used in serviceability design to take account of the
		long-term effects of creep and shrinkage
	k_r	ratio
	k_u	neutral axis parameter, being the ratio, at ultimate strength and
		under any combination of bending and compression, of the depth
		to the neutral axis from the extreme compressive fibre, to d
	k_{uB}	ratio, at ultimate strength, of the depth to the neutral axis from th
		extreme compressive fibre, to d , at balanced failure condition
	k_{uo}	the ratio, at ultimate strength, of the depth to the neutral axis fror
		the extreme compressive fibre, to d_o
	L	centre-to-centre distance between the supports of a flexural
		member
	L _e	effective length of a column
	L _{ef}	effective span of a member, taken as the lesser of $(L_n + D)$ and L
		for a beam or slab; or = $(L_n + D/2)$ for a cantilever
	L_l	distance between centres of lateral restraints
	L_n	length of clear span in the direction in which moments are being
		determined, measured face-to-face of supporting beams, columns
		or walls, or for a cantilever, the clear projection
	Lo	distance between the points of zero bending moment in a span
	L'_o	length of a span
	L_p	development length for pretensioned tendons
	L _{pt}	transmission length for pretensioned tendons
	L _{st}	development length of a bar for a tensile stress less than the
		yield stress
	$L_{sy.c}$ $(L_{sy.t})$	development length for compression (tension), being the length of
		embedment required to develop the yield strength of a bar in
		compression (tension)

$L_{sy.cb}$ ($L_{sy.tb}$)	basic design development length for compression (tension)
L _{sy.t.lap}	tensile lap length for either contact or non-contact splices
L_t	width of a design strip
L _u	unsupported length of a column, taken as the clear distance
	between the faces of members capable of providing lateral support
	to the column, where column capitals or haunches are present, L_u
	is measured to the lowest extremity of the capital or haunch
L_w	overall length of a wall
L_{x}	shorter effective span of a slab supported on four sides
L_y	longer effective span of a slab supported on four sides
l_b	basic development length
M'	effective or reliable moment capacity of a section (i.e. $= \phi M_u$)
M^*	bending moment at a cross-section calculated using the design
	load (i.e. the design bending moment)
$M^*{}_{\nu}$	design bending moment to be transferred from a slab to a support
M_{x}^{*}, M_{y}^{*}	design bending moment in a column about the major and minor
	axes respectively; or the positive design bending moment, at
	midspan in a slab, in the x and y direction respectively
M_{1}^{*}, M_{2}^{*}	smaller and larger design bending moment respectively at the
	ends of a column
M _{cr}	bending moment causing cracking of the section with due
	consideration to prestress, restrained shrinkage and temperature
	stresses
M_g	moment due to sustained or dead load
M_o	total static moment in a span; or the decompression moment
M_q	live load moment
$M_{\rm s}$	moment due to service load
M_{s}^{*}	design bending moment at the serviceability limit state
$M^*_{s.1}$	design bending moment at the serviceability limit state, calculated
	with $\psi_s = 1.0$
M _u	ultimate strength in bending at a cross-section of an eccentrically
	loaded compression member
M_{uB}	particular ultimate strength in bending when $k_{uo} = 0.003/(0.003)$
	$+ f_{sy}/E_s$)
M_{ud}	reduced ultimate strength in bending without axial force, at a
	cross-section
M _{uo}	ultimate strength in bending without axial force, at a cross-section
M_{ux} , M_{uy}	ultimate strength in bending about the major and minor axes
	respectively of a column under the design axial force N^*
M_y	yield moment
N^*	axial compressive or tensile force on a cross-section calculated
	using the design load (i.e. the design axial force)
N _c	buckling load used in column design

Notation

__ xxv

xxvi	Notation	
	N_u	ultimate strength in compression, or tension, at a cross-section of an eccentrically loaded compression or tension member
		respectively
	N_{uB}	particular ultimate strength in compression of a cross-section when $k_{uo} = 0.003/(0.003 + f_{sy}/E_s)$
	N _{uo}	ultimate strength in compression without bending, of an axially loaded cross-section
	n	number of bars uniformly spaced around a helix; or the modular ratio (= E_s/E_c)
	Р	force in the tendons; or the maximum force in the anchorage
	P_n	axial load applied to a pile
	P_{v}^{P}	vertical component of the prestressing force
	p	reinforcement ratio
	$p_{\rm B}$	balanced steel ratio
	Pall	maximum allowable steel ratio for beam without special consideration
	p_c	compression steel ratio
	p_t	tensile steel ratio
	$p_{t.min}$	minimum steel ratio required for a section
	p_w	reinforcement ratio in a wall
	Q	action effect due to live load (including impact, if any)
	q	live load usually per unit length or area
	q _f	allowable soil bearing capacity
	R_d	design capacity of a member or structure (equal to ϕR_u)
	R _u	ultimate resistance strength
	r	radius of gyration of a cross-section
	S _u	action effect due to snow load or liquid pressure or earth and/or ground water pressure
	S*	design action effect (E_d)
	S	centre-to-centre spacing of shear or torsional reinforcement, measured parallel to the longitudinal axis of a member; or the standard deviation; or the maximum spacing of transverse reinforcement within $L_{sy.c}$; or spacing of stirrups or ties; or
		spacing of successive turns of a helix – all measured centre to centre, in millimetres
	Sb	clear distance between bars of the non-contact lapped splice
	Т	a temperature; or the force resultant of tensile stresses
	<i>T</i> *	torsional moment at a cross-section calculated using the design load (i.e. the design torsional moment)
	T_u	ultimate torsional strength
	T _{uc}	ultimate torsional strength of a beam without torsional reinforcement and in the presence of shear

$T_{\mu s}$	ultimate torsional strength of a beam with torsional reinforcement
T _{u.max}	ultimate torsional strength of a beam limited by web crushing
	failure
t	thickness of the flange of a flanged section
t _w	thickness of a wall
и	length of the critical shear perimeter for two-way action
<i>u</i> _t	perimeter of the polygon defined for A_t
Va	inclined shear stress resultant
V_c	concrete shear stress resultant
V_d	dowel force provided by the tension reinforcement
V _u	ultimate shear strength
V _{u.max}	ultimate shear strength limited by web crushing failure
V _{u.min}	ultimate shear strength of a beam provided with minimum shear
	reinforcement
V _{uc}	ultimate shear strength excluding shear reinforcement
Vuf	ultimate longitudinal shear strength at an interface
V _{uf.c}	ultimate longitudinal shear strength of a beam without shear
	reinforcement
V _{uo}	ultimate shear strength of a slab with no moment transfer
V _{us}	contribution by shear reinforcement to the ultimate shear strength
	of a beam or wall
V^*	shear force at a section, calculated using the design load (i.e. the
	design shear force)
ν	percent by volume of the steel reinforcement in a reinforced or
	prestressed concrete section; or the shear stress
W_{BF}	weight of the backfill materials over the heel of a retaining wall
W_{FS}	weight of front surcharge materials over the toe of a retaining wall
W_{SL}	weight due to surcharge load over the heel of a retaining wall
Wu	action effect due to ultimate wind load
W _{cr}	average crack width
w _{max}	maximum crack width
Χ	dimension
X	shorter overall dimension of a rectangular part of a cross-section;
	or the smaller dimension of a component rectangle of a T, L or
	I-section
Y	dimension
у	longer overall dimension of a rectangular part of a cross-section;
	or the larger dimension of a component rectangle of a T, L or
	I-section
<i>y</i> ₁	larger dimension of a closed rectangular tie
<i>y</i> _t	distance between the neutral axis and the extreme fibres in tension
	of the uncracked section

Notation

__xxvii

xxviii	Notation	
	7	section modulus of an uncracked cross-section
	2	coefficient: or the inclination of the initial tangent to the concrete
	u	strass strain survey or a factor defining the geometry of the actual
		stress-strain curve, of a factor defining the geometry of the actual
		concrete stress block
	$lpha_M$	coefficient for the calculation of deflection due to applied moment
	α_n	coefficient for the coloristics of deflection due to concentrated
	α_P	coefficient for the calculation of deflection due to concentrated
		load
	α_{ν}	angle between the inclined shear reinforcement and the
		longitudinal tensile reinforcement
	$lpha_w$	coefficient for the calculation of deflection due to uniformly
		distributed load
	α_2	factor defining the equivalent rectangular concrete stress block
	eta	coefficient with or without numerical subscripts; or a fixity factor;
		or a factor defining the geometry of the actual concrete stress
		block; or slope angle of the backfill for retaining walls
	$oldsymbol{eta}_{ extsf{BF}}, oldsymbol{eta}_{ extsf{FS}}, oldsymbol{eta}_{ extsf{SL}}, oldsymbol{eta}_{ extsf{W}}$	load combination factors for calculating different component
		forces for a retaining wall
	$\boldsymbol{\beta}_{x}, \boldsymbol{\beta}_{y}$	short and long span bending moment coefficients respectively, for
		slabs supported on four sides
	γ	ratio, under design bending or combined bending and
		compression, of the depth of the assumed rectangular compressiv
		stress block to k_{ud}
	γ_1, γ_2	column end restraint coefficients
	Δ	deflection
	$\Delta_{A,g}$	accumulated sustained or dead load deflection caused by the dead
	8	load and the effects of all the previous live load repetitions
	Δ_{I}	immediate deflection due to total service load
	Δ_{La}	immediate deflection caused by the sustained load or in most
		cases the dead load
	Λ_1	long-term deflection
	Λ_{T}	total deflection
	Λ_{r}	immediate live load deflection at the T^{th} cycle
	$\frac{-q}{\delta}$ $\delta_{\rm h}$ $\delta_{\rm c}$	moment magnifiers for slenderness effects
	ε, σ _ν , σ _s	strain
	e E	ultimate strain of concrete
	E.	strain in the tensile reinforcement
	د د	strain in compression steel
	C SC	vield strain in reinforcing steel
	e sy	factor accounting for the difference between the cruching strength
	1	of concrete cylinders and the concrete in the heary or effective
		prostross coefficient
		prestress coefficient

Notation	xxix

ν	Poisson ratio for concrete
θ_{v}, θ_{t}	angle between the concrete compression strut and the longitudinal
	axis of the member
ρ	density of concrete, in kilograms per cubic metre (kg/m ³)
$ ho_{\scriptscriptstyle W}$	unit weight of reinforced or prestressed concrete
σ_{ci}	sustained concrete stress
σ_{cp}	average intensity of effective prestress in concrete
$\sigma_{cp.f}$	compressive stress at the extreme fibre
$\sigma_{p.ef}$	effective stress in the tendon
$\sigma_{\it pi}$	stress in the tendon immediately after transfer
σ_{pu}	maximum stress which would be reached in a tendon at ultimate
	strength of a flexural member
σ_{scr}	tensile stress in reinforcement at a cracked section, due to the
	short-term load combination for the serviceability limit states
	when direct loads are applied
$\sigma_{scr.1}$	tensile stress in reinforcement at a cracked section, due to the
	short-term load combination for the serviceability limit states,
	calculated with $\psi_s = 1.0$, when direct loads are applied
σ_{st}	calculated tensile stress in reinforcement
$ au^*$	design shear stress acting on the interface
τ_u	unit shear strength
ϕ	capacity reduction factor; or angle of internal friction for soil
ψ_c	combination live load factor used in assessing the design load for
	strength
ψ_s	short-term live load factor used in assessing the design load for
	serviceability
ψ_l	long-term live load factor used in assessing the design load for
	serviceability

XXX

Acknowledgements for tables and diagrams

Page 91: Tables 4.7(1) and 4.7(2)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*, Tables 8.6.1(A) and (B). Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 155: Figure 8.2(4)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 171: Table 8.3(3)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 179: Figure 8.4(2)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 409: Figure D.6(1)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 410: Figure D.6(2)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

Page 411: Figure D.6(3)

Source: Standards Australia (2009). *AS 3600-2009 Concrete Structures*. Standards Australia, Sydney, NSW. Reproduced with permission from SAI Global under Licence 1004-C029. The Standard is available online at http://www.saiglobal.com.

xxxi

Acronyms and abbreviations

AS	Australian Standard
Cg	centre of gravity
É	centre line
CSS	critical stress state
ESO	evolutionary structural optimisation
LC	loading case
LDS	linearly distributed stress
NA	neutral axis
PC	plastic centre
SP	shear plane
the Standard	AS 3600-2009 Concrete Structures
STM	strut-and-tie model