INTRODUCTION TO COMPUTABLE GENERAL EQUILIBRIUM MODELS

Computable general equilibrium (CGE) models are widely used by governmental organizations and academic institutions to analyze the economywide effects of events such as climate change, tax policies, and immigration. This book is a practical, how-to guide to CGE models that is suitable for use at the undergraduate college level. Its introductory level distinguishes it from other available books and articles on CGE models. The book provides intuitive and graphical explanations of the economic theory that underlies a CGE model and includes many examples and hands-on model exercises. It may be used in courses on economic principles, microeconomics, macroeconomics, public finance, environmental economics, and international trade and finance, because it shows students the role of theory in a realistic model of an economy. The book is also suitable for courses on general equilibrium models and research methods, and for professionals interested in learning how to use CGE models.

Mary E. Burfisher is a Distinguished Visiting Professor at the United States Naval Academy, Annapolis, Maryland. She has also served as a senior economist for the Economic Research Service of the U.S. Department of Agriculture in Washington, D.C. Dr. Burfisher is a consultant on computable general equilibrium models and agricultural policy for U.S. governmental agencies and international organizations. She is the author or editor of numerous monographs, books, and articles on international agricultural and trade policies. Dr. Burfisher was a Fellow of the Global Trade Analysis Project (GTAP) at Purdue University from 2003 to 2010 and received the Quality of Communication Award from the American Agricultural Economics Association. She earned her Ph.D. in economics from the University of Maryland.
INTRODUCTION TO COMPUTABLE GENERAL EQUILIBRIUM MODELS

MARY E. BURFISHER
United States Naval Academy, Annapolis, Maryland
For my family
Contents

Text Boxes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
</tr>
</tbody>
</table>

About This Book

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
</tr>
<tr>
<td>xiii</td>
</tr>
<tr>
<td>xv</td>
</tr>
<tr>
<td>xvi</td>
</tr>
<tr>
<td>xvii</td>
</tr>
</tbody>
</table>

Acknowledgments

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xix</td>
</tr>
</tbody>
</table>

1. Introduction to Computable General Equilibrium Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Models, Economists’ Toys</td>
<td>1</td>
</tr>
<tr>
<td>What Is a Computable General Equilibrium Model?</td>
<td>3</td>
</tr>
<tr>
<td>A Standard CGE Model</td>
<td>8</td>
</tr>
<tr>
<td>CGE Model Structure</td>
<td>9</td>
</tr>
<tr>
<td>CGE Model Database</td>
<td>9</td>
</tr>
<tr>
<td>CGE Model Applications</td>
<td>10</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>Key Terms</td>
<td>12</td>
</tr>
<tr>
<td>Practice and Review</td>
<td>12</td>
</tr>
</tbody>
</table>

2. Elements of a Computable General Equilibrium Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td>17</td>
</tr>
<tr>
<td>Endogenous Variables</td>
<td>17</td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td>18</td>
</tr>
<tr>
<td>Model Closure</td>
<td>19</td>
</tr>
<tr>
<td>Exogenous Parameters</td>
<td>19</td>
</tr>
<tr>
<td>Model Calibration</td>
<td>27</td>
</tr>
<tr>
<td>Equations</td>
<td>29</td>
</tr>
<tr>
<td>Macroclosure</td>
<td>31</td>
</tr>
<tr>
<td>Normalizing Prices</td>
<td>32</td>
</tr>
<tr>
<td>Price Linkages</td>
<td>34</td>
</tr>
<tr>
<td>Numeraire</td>
<td>37</td>
</tr>
</tbody>
</table>
Contents

Structure of a CGE Model 39
Summary 41
Key Terms 41
Practice and Review 42

3. The CGE Model Database: A Social Accounting Matrix 44
 Introduction to the Social Accounting Matrix 44
 Accounts in a SAM 46
 Microeconomic Data in a SAM 54
 Macroeconomic Data in a SAM 54
 Structure Table 58
 Tax Data in a SAM 65
 The SAM and Economic Models 66
 Summary 68
 Key Terms 69
 Practice and Review 69

4. Final Demand in a CGE Model 71
 Final Demand Data in a SAM 72
 Income Data in a SAM 73
 Two-Stage Domestic Final Demand 74
 Utility-Maximizing Private Households 77
 Demand Response to Income Changes 80
 Demand Response to Relative Price Changes 81
 Comparing Utility Functions Used in CGE Models 84
 Import Demand 90
 Export Demand 93
 Consumer Welfare 95
 Summary 100
 Key Terms 101
 Practice and Review 102
 Technical Appendix 4.1: Elasticity Parameters in Utility Functions 103

5. Supply in a CGE Model 105
 Production Data in a SAM 106
 Input-Output Coefficients 107
 Producer Behavior in a CGE Model 110
 Technology Tree and Nested Production Functions 110
 Intermediate Input Demand 112
 Factor (Value-Added) Demand 115
 Combining Intermediate Inputs and Factors 119
 Input Prices and Level of Output 120
Contents

Export Supply 123
Summary 125
Key Terms 126
Practice and Review 127
Technical Appendix 5.1: Inputs as Substitutes or Complements – Energy Nesting in Climate Models 128

6. Factors of Production in a CGE Model 132
Factors of Production Data in a SAM 133
Factor Mobility 134
Factor Endowment Change 137
Factors as Complements and Substitutes 138
Factor Productivity Change 140
Factor Unemployment 144
Factors and Structural Change 145
Summary 148
Key Terms 148
Practice and Review 149

7. Trade in a CGE Model 150
Trade Data in a SAM 151
Exchange Rates 152
Terms of Trade 155
Trade Theory in CGE Models 158
Factor Endowment Changes, Trade, and Terms of Trade 159
World Price Changes and Factor Income Distribution 163
Booming Sector, Dutch Disease 167
Trade and Transportation Margins in International Trade 169
Summary 171
Key Terms 172
Practice and Review 172

8. Taxes in a CGE Model 174
Trade Taxes 178
Production Taxes 185
Sales (and Intermediate Input) Taxes 188
Factor Use Taxes 191
Income Taxes 195
Second-Best Efficiency Effects 198
Marginal Welfare Burden of a Tax 199
Summary 204
Key Terms 204
Practice and Review 204
Technical Appendix 8.1: Compensated Demand and Welfare Effects

9. Conclusion: Frontiers in CGE Modeling

Model Exercises

Introduction
Model Exercise 1: Set Up the GTAP Model and Database
Model Exercise 2: Explore the GTAP Model and Database
Model Exercise 3: Run the GTAP Model
Model Exercise 4: Soaring Food Prices and the U.S. Economy
Model Exercise 5: Food Fight: Agricultural Production Subsidies
Model Exercise 6: How Immigration Can Raise Wages
Model Exercise 7: The Doha Development Agenda
Model Exercise 8: The Marginal Welfare Burden of the U.S. Tax System
Model Exercise 9: Successful Quitters – The Economic Effects of Growing Antismoking Attitudes

Appendix: Social Accounting Matrix for the United States, 2004

$US Billions

Glossary

Practice and Review Answer Key

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Model Exercise Answer Key

Model Exercise 2
Model Exercise 3
Model Exercise 4
Model Exercise 5
Model Exercise 6
Model Exercise 7
Model Exercise 8
Model Exercise 9

References

Author Index

Subject Index
Text Boxes

1.1 The GTAP Global Database
2.1 Math Refresher – Working with Percent Changes page 10
2.2 The Small Share Problem and the Armington Import
 Aggregation Function 18
2.3 Macroclosure and Structural Adjustment in Costa Rica 30
2.4 The Numeraire and Walras’ Law 33
3.1 Key Features of a SAM 38
3.2 Disaggregated Production Regions and Households in a SAM
 for Morocco 45
3.3 Macroeconomic Projections in a CGE Model of China 49
3.4 Distributing National Effects to the State Level in a CGE
 Model of the United States 55
4.1 Consumer Aversion to GM Foods 57
4.2 A Macro-Micro CGE Model of Indonesia 76
4.3 Consumer Fear and Avian Flu in Ghana 79
5.1 Climate Change, Emissions Taxes, and Trade in the
 CIM-EARTH Model 87
5.2 Climate Variability and Productivity in Ethiopia 113
6.1 The Economic Impacts of Global Labor Migration 119
6.2 HIV/AIDS – Disease and Labor Productivity in Mozambique 135
7.1 Rybczynski Effects in a Global CGE Model of East Asia 142
7.2 Stolper-Samuelson vs. Migration Effects in NAFTA 161
7.3 “Dutch Disease” in Cameroon 165
8.1 Welfare Decomposition in the GTAP Model 167
8.2 U.S. Tax Reform in a Dynamic Overlapping-Generations CGE
 Model 177
8.3 Marginal Welfare Burden of Taxes in Developing Countries 196
9.1 An Intertemporal Dynamic CGE Model of the United States 201
9.2 A Stochastic CGE Model: Caloric Intake in Bangladesh 202
About This Book

Objectives

This book will introduce you to computable general equilibrium (CGE) models. A CGE model is a powerful analytical tool that can help you to gain a better understanding of real-world economic issues. CGE models are a class of economic model that over the past twenty-five years has gained widespread use in the economics profession, particularly in government. Economists today are using these models to systematically analyze some of the most important policy challenges and economic “shocks” of the twenty-first century, including global climate change, the spread of human diseases, and international labor migration.

Since the early 1990s, prominent CGE models have been built and maintained at the U.S. International Trade Commission, the Economic Research Service of the U.S. Department of Agriculture, the World Bank, and other national agencies and international organizations to provide ongoing economic analytical capability. These models have come to play an important part worldwide in government policy decisions. For example, the models’ predictions about prices, wages, and incomes factored heavily in the debate about the terms of the North American Free Trade Agreement, the Kyoto Protocol, and China’s entrance into the World Trade Organization. CGE-based analyses have also helped the United States and other governments anticipate and design responses to substantial changes in the availability of key resources, ranging from petroleum to people.

CGE models are comprehensive because – whether they are detailed or very simplified – they describe all parts of an economy simultaneously and how these parts interact with each other. The models describe the efficiency-maximizing behavior of firms and the utility-maximizing behavior of consumers. Their decisions add up to the macroeconomic behavior of an economy, such as changes in gross domestic product (GDP), government tax revenue and spending, aggregate savings and investment, and the balance of
About This Book

Prologue Table 1. *Modeling and Data Resources Used in This Book*

<table>
<thead>
<tr>
<th>Resource</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunGTAP CGE model</td>
<td>Download from GTAP.org</td>
</tr>
<tr>
<td>GTAPAgg7-global database</td>
<td>Download from GTAP.org</td>
</tr>
<tr>
<td>aggregation utility</td>
<td></td>
</tr>
<tr>
<td>U.S. 3x3 database</td>
<td>Create using GTAPAgg7</td>
</tr>
</tbody>
</table>

Trade. As might be expected, such models can require large databases and they contain sophisticated model code. Yet despite their complexity, continuing advances in modeling software and database development are making CGE models increasingly accessible and intuitive. Minimizing the technical entry barriers to CGE modeling has freed economists to focus on the models’ economic behavior and the economic insights that can be derived from their results. These innovations have also made CGE models an ideal laboratory in which economics students can learn to manipulate, observe, and deepen their knowledge of economic behavior.

This book is designed to provide a hands-on introduction to CGE models. You will draw on theory from microeconomics, macroeconomics, international trade and finance, public finance, and other areas of economics, as you observe how producers and consumers in the CGE model respond to various changes in market conditions that we refer to as “model experiments.” The guided model exercises will show you how to build and use a demonstration CGE model to assess the economywide effects of such economic shocks as the elimination of agricultural subsidies, global elimination of trade barriers, labor immigration, and changes in a tax system. By the end of the book, you will have begun to develop your skills as both a producer and a consumer of professional CGE-based economic analysis.

The book introduces the CGE models and databases that are used by professional economists. We will study the key features of “standard” CGE models, which are static (single period), single- and multicountry models, with fixed national endowments of factors of production. Most textbook examples and model exercises use RunGTAP, a user-friendly, menu-driven interface (Horridge, 2001) of the GTAP (Global Trade Analysis Project) CGE model. RunGTAP may be downloaded at no charge from the GTAP Web site (Prologue Table 1). The GTAP CGE model is an open model developed by Hertel and Tsigas (1997) and is written in the GEMPACK software.

The GTAP project also maintains a global database that CGE modelers rely on as a data source for many types of CGE models. The database is built on data contributions from CGE modelers around the world, which GTAP then organizes and balances into a consistent, global database.
version of the database, used in this book, describes 113 countries or regions and 57 industries in 2004. Modelers may use GTAPAgg, a freeware program developed by Horridge (2008b) and available from the GTAP project, to aggregate the global database into smaller sets of regions and industries that are relevant for their research. In this book and in the model exercises, most examples use a small-dimension, two-region aggregation of the database that describes the United States and an aggregate rest-of-world region.

Organization

This book covers eight topics beginning with an introduction to CGE models (Chapter 1), their elements and structure (Chapter 2), and the data that underlie them (Chapter 3). Chapters 4–6 focus on the microeconomic underpinnings of CGE models. Chapter 4 describes final demand by households, government, and investors and the demand for imports and exports. Chapter 5 describes supply, focusing on the technology tree and the producer’s cost-minimizing demand for intermediate and factor inputs. Chapter 6 covers additional aspects of factor markets, including factor mobility, factor endowment and productivity growth, factor substitutability, and factor employment assumptions. Trade topics, including theorems on the effects of endowment changes and world prices, are covered in Chapter 7. Chapter 8 explores public finance topics related to trade and domestic taxes.

Chapters 1–8 adhere to a common template, consisting of:

- Chapter text (e.g., “Introduction to Computable General Equilibrium Models”)
- Text boxes
- Chapter summary
- Key terms (e.g., “stock” and “flow”)
- Practice and review exercises
- Model exercise

Text boxes introduce examples of classic, innovative, and influential CGE-based economic analyses that relate to chapter topics. These summarized articles offer practical examples of how the concepts that you are learning about in the chapter are operationalized in CGE models. Practice and review exercises review and reinforce the central themes of the chapter.

Model exercises linked to each chapter provide step-by-step direction and guidance to help you to develop your modeling skills (Prologue Table 2). The modeling problems are general enough to be suitable for use with almost any standard CGE model, but their detailed instructions are compatible with RunGTAP. The first three model exercises guide you in creating a database, setting up your CGE model, and learning core modeling skills. You may use the demonstration model developed in the first model exercise.
Prologue Table 2. *Chapters and Related Model Exercises*

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Model Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to CGE Models</td>
<td>Set up the GTAP Model and Database</td>
</tr>
<tr>
<td>2. Elements of a CGE Model</td>
<td>Explore the GTAP Model and Database</td>
</tr>
<tr>
<td>3. The CGE Model Database: A Social Accounting Matrix</td>
<td>Run the GTAP Model</td>
</tr>
<tr>
<td>4. Final Demand in a CGE Model</td>
<td>Soaring Food Prices and the U.S. Economy</td>
</tr>
<tr>
<td>5. Supply in a CGE Model</td>
<td>Food Fight – Agricultural Production Subsidies</td>
</tr>
<tr>
<td>6. Factors of Production in a CGE Model</td>
<td>How Immigration Can Raise Wages</td>
</tr>
<tr>
<td>7. Trade in a CGE Model</td>
<td>The Doha Development Agenda</td>
</tr>
<tr>
<td>8. Taxes in a CGE Model</td>
<td>The Marginal Welfare Burden of the U.S. Tax System</td>
</tr>
<tr>
<td></td>
<td>Challenge: Successful Quitters: The Economic Effects of Growing Antismoking Attitudes</td>
</tr>
</tbody>
</table>

To replicate almost all results reported in the tables in Chapters 1–8 of the book. Exercises 4–8 are case studies that begin with a discussion of a timely topic or influential CGE analysis such as labor immigration and U.S. tax policies. They demonstrate how to design model experiments and how to use economic theory to select and interpret model results. A ninth “challenge exercise” introduces advanced students to macroprojections and uncertainty about economic shocks.

Resources for New CGE Modelers

We recommend that beginning modelers start by reading articles and monographs, both current and classic, that provide general introductions to, or critiques of, CGE models. Particularly recommended as introductory treatments are Piermartini and Teh (2005), McDaniel et al. (2008), Shoven and Whalley (1984), Bandara (1991), Francois and Reinert (1997), Robinson et al. (1999), Devarajan et al. (1990, 1997), and Borges (1986). Breisinger, Thomas, and Thurlow (2009); Reinert and Roland-Holst (1992); and King (1985) provide introductions to social accounting matrices, which are the databases that underlie CGE models.

As your skills progress, we recommend that you read the intermediate-level treatments in Kehoe and Kehoe’s (1994) primer on CGE models and Dervis, de Melo, and Robinson’s (1982) introduction to open economy CGE models. Hosoe, Gasawa, and Hashimoto (2010) introduce students at
an intermediate level to CGE models, focusing on models coded in General Algebraic Modeling Software (GAMS). Some books and articles that describe specific CGE models are also useful for new modelers, who will recognize many of the same features in those models as in the standard CGE model that we study in this book. Hertel and Tsigas (1997) provide an overview of the GTAP model. Lofgren, Harris, and Robinson (2002) describe the International Food Policy Research Institute’s (IFPRI) standard single-country CGE model and database. De Melo and Tarr (1992) describe the structure and behavior of their CGE model of the United States. For more advanced students, Shoven and Whalley (1992) provide a practical introduction to CGE models, and Scarf and Shoven (2008) present a collected volume of case studies that describe different aspects of CGE models.

Because CGE modeling is a dynamic field of research, the best way to keep abreast of developments in CGE modeling and in the applications of CGE models is to review working papers and conference papers, in addition to economic journals. The GTAP Web site, at www.gtap.org is a useful source for up-to-date information on CGE-based research papers, CGE model databases, and research tools and utilities related to the GTAP model and data. All papers presented at annual GTAP conferences are posted online, providing students with access to unpublished papers and work in progress by many leading CGE modelers, using many types of CGE models. Perusing recent conference papers can give you ideas for timely research topics and experiment designs for your own research projects.

The International Food Policy Research Institute (IFPRI), which developed the “IFPRI standard” CGE model, has published many studies based on variations of that model as well as papers about model databases and database construction. These publications are available from the IFPRI Web site at www.ifpri.org.

Many international organizations, such as the World Bank, and national government agencies, such as the U.S. Department of Agriculture, also produce and post CGE-based working papers and research products. In addition, the GAMS Web site, at www.gams.org maintains a library of simple CGE models that can be downloaded and run using the free demonstration versions of GAMS. Also, the United States Naval Academy hosts the Tools for Undergraduates “TUG-CGE” model (Thierfelder, 2009), a GAMS-based CGE model designed for undergraduate use.

For the Instructor

The book is designed for use in a one-semester class that is spent primarily doing hands-on model exercises and independent research, with the book used as background reading. The exercises are all fully portable. They are
Prologue Table 3. *Recommended Sequences for Courses of Different Lengths*

<table>
<thead>
<tr>
<th>Chapter</th>
<th>One Semester Course</th>
<th>6-Week Course</th>
<th>1-Week Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to CGE Models</td>
<td>0.5 weeks</td>
<td>0.5 weeks</td>
<td>Omit</td>
</tr>
<tr>
<td>2. Elements of a CGE Model</td>
<td>1 week</td>
<td>0.5 weeks</td>
<td>0.25 day</td>
</tr>
<tr>
<td>3. CGE Model Data: Social Accounting Matrix</td>
<td>1 week</td>
<td>1 week</td>
<td>0.5 day</td>
</tr>
<tr>
<td>4. Demand in a CGE Model</td>
<td>1.5 weeks</td>
<td>0.5 weeks</td>
<td>0.5 day</td>
</tr>
<tr>
<td>5. Supply in a CGE Model</td>
<td>1.5 weeks</td>
<td>0.5 weeks</td>
<td>0.5 day</td>
</tr>
<tr>
<td>6. Factors of Production in a CGE Model</td>
<td>1 week</td>
<td>Optional</td>
<td>Omit</td>
</tr>
<tr>
<td>7. Trade in a CGE Model</td>
<td>1.0 weeks</td>
<td>0.5 weeks</td>
<td>0.5 day</td>
</tr>
<tr>
<td>8. Taxes in a CGE Model</td>
<td>1.5 weeks</td>
<td>0.5 weeks</td>
<td>0.75 day</td>
</tr>
<tr>
<td>Independent Research</td>
<td>6 weeks</td>
<td>2 weeks</td>
<td>2 days</td>
</tr>
</tbody>
</table>

designed to use free materials downloaded from the Internet so they are suitable for students to carry out in computer labs or on their personal computers. The ideal classroom setting is one that promotes student teamwork and ongoing discussion among students and teachers while students carry out model exercises.

The book can also be used in condensed courses, with our recommendations for selecting and paring materials described in Prologue Table 3. For courses of all lengths, we recommend a generous allotment of time for model exercises and independent research because students will then learn by doing. If the book is used as a supplementary hands-on resource for economic theory courses, such as macroeconomics or international trade, we suggest that the teacher cover Chapters 1–3 and their related model exercises and then assign only the chapter and exercise that is relevant to the course. Most teachers are likely to find that some or all of Chapter 8 on taxes is relevant because taxes are a policy lever that governments use to address many economic problems.
Acknowledgments

This book was made possible by the support of three institutions. I am most grateful to the National Science Foundation and especially to Dr. Myles G. Boylan, Program Director in the Course, Curriculum and Laboratory Improvement Program of the Division of Undergraduate Education, who encouraged this project from its inception. I deeply appreciate the support provided to me by the United States Naval Academy, where I was privileged to be a Distinguished Visiting Professor while writing this book. The Global Trade Analysis Project (GTAP), particularly Thomas Hertel and Terrie Walmsley, have been tremendously generous in their encouragement and support of this project. I am also deeply grateful to Karen Thierfelder, a longtime friend and colleague, and to Sherman Robinson, who has been a generous teacher and friend. I have learned much about models and policy analysis from our long and rewarding collaboration. Victoria Greenfield, Kurtis Swope, and Katherine Smith – my colleagues at the Academy – acted as beta testers and reviewers and provided insightful critiques and many helpful suggestions and edits on earlier drafts of the book. I owe a special thanks to my students at the Naval Academy, who over the course of four years uncovered many errors and oversights, and who often provided fresh takes on CGE models and economic theory. My editor, Scott Parris, and Adam Levine and Tilak Raj at Cambridge University Press facilitated this project in every way possible while guiding it through to publication. I also thank Roger Betancourt, Cheryl Christensen, Neil Conklin, Praveen Dixit, Aziz Elbehri, Cheryl Flax-Davidson, Rae Jean Goodman, Kenneth Hanson, Barry Krissoff, Gene Mathia, Sara Pastor, Alan Pocinki, Ken Reinert, David Skully, Agapi Somwaru, and Deborah Tanno, each of whom, in different ways, helped to bring this project to fruition. Channing Arndt, Rob McDougall, Jeffrey Round, Marcelle Thomas, Marinos Tsigas, Dominique van der Mensbrugg, Frank van Tongeren, and three anonymous reviewers provided many helpful ideas, corrections, and suggestions.
Acknowledgments

All remaining errors are my own responsibility, and I encourage readers to contact me about them or to offer their comments or suggestions on the book.

This material is based upon activities supported by the National Science Foundation under Agreement No. DUE-0632836. Any opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.