The construction of formal measurement systems underlies the development of science and technology, economy and new ways of understanding and explaining the world. Human societies have developed such systems in different ways in different places and at different times, and recent archaeological investigations highlight the importance of these activities for fundamental aspects of human life. The construction of measurement systems constituted new means of recognising and engaging with the material world, and their implications, and the motivations behind them, also extend beyond the material world. Measurement systems have provided the structure for addressing key concerns of cosmological belief systems, as well as the means for articulating relationships between the human form, human action and the world – and new understanding of relationships between events in the terrestrial world and beyond.

The Archaeology of Measurement explores the archaeological evidence for the development of measuring activities in numerous ancient societies, as well as the implications of these discoveries for an understanding of their worlds and beliefs. Featuring contributions from a cast of internationally renowned scholars, it analyzes the relationships between measurement, economy, architecture, symbolism, time, cosmology, ritual and religion among prehistoric and early historic societies throughout the world.

Iain Morley is a Fellow and Tutor in Archaeology and Anthropology at Keble College, Oxford, and until 2009 was a Fellow of the McDonald Institute for Archaeological Research and Research Fellow of Darwin College, Cambridge. A scholar of Palaeolithic archaeology and the evolution of human cognition, he is also coeditor, with Colin Renfrew, of _Becoming Human: Innovation in Prehistoric Material and Spiritual Culture_ and _Image and Imagination: A Global Prehistory of Figurative Representation._

Colin Renfrew (Lord Renfrew of Kaimsthorn) is Emeritus Disney Professor of Archaeology at Cambridge University, where he is a Senior Fellow of the McDonald Institute for Archaeological Research. He is author of many influential books on archaeology and prehistory, including, with Paul Bahn, _Archaeology: Theories, Methods and Practice_, which is one of the standard textbooks on the subject.
The Archaeology of Measurement

Comprehending Heaven, Earth and Time in Ancient Societies

Edited by

Iain Morley
Keble College, Oxford

Colin Renfrew
The McDonald Institute for Archaeological Research
Contents

List of figures and tables page vii
List of contributors xiii
Acknowledgements xv

Introduction: Measure: Towards the construction of our world 1
Colin Renfrew and Iain Morley

SECTION I. NUMBER: COUNTING, MATHEMATICS AND MEASURE 5

1 Conceptualising quantification before settlement: Activities and issues underlying the conception and use of measurement 7
Iain Morley

2 Measurement in navigation: Conceiving distance and time in the Neolithic 19
Helen Farr

3 The token system of the ancient Near East: Its role in counting, writing, the economy and cognition 27
Denise Schmandt-Besserat

4 Grasping the concept of number: How did the sapient mind move beyond approximation? 35
Lambros Malafouris

5 Numerical cognition and the development of ‘zero’ in Mesoamerica 43
John Justeson

6 Recording measure(ment)s in the Inka khipu 54
Gary Urton

SECTION II. MATERIALISING THE ECONOMY 69

7 Measuring by weight in the Late Bronze Age Aegean: The people behind the measuring tools 71
Anna Michailidou
8 The concept of weighing during the Bronze Age
in the Aegean, the Near East and Europe 88
Lorenz Rahmstorf

9 Measuring the Harappan world: Insights into the
Indus order and cosmology 106
J. Mark Kenoyer

SECTION III. DIMENSIONS AND BELIEF 123

10 Architectural measurements in the Indus cities:
The case study of Mohenjo-Daro. 125
Michael Jansen

11 Teotihuacan city layout as a cosmogram: Preliminary
results of the 2007 Measurement Unit Study. 130
Saburo Sugiyama

12 Aztec dimensions of holiness 150
John E. Clark

13 Establishing direction in early Egyptian burials and
monumental architecture: Measurement and the spatial
link with the ‘other’. ... 170
Kate Spence

SECTION IV. CALENDAR AND COSMOLOGY 181

14 The measurement of time and distance in the heavens
above Mesopotamia, with brief reference made to other
ancient astral sciences ... 183
David Brown

15 Evolution of the calendar in Shang China 195
Mark Edward Lewis

16 The measure of time in Mesoamerica: From Teotihuacan
to the Maya ... 203
Anthony F. Aveni

17 Measuring time, sacred space, and social place
in the Inca Empire ... 216
Charles Stanish

18 Measuring time in the European Neolithic? The function
and meaning of Central European circular enclosures 229
Peter F. Biehl

SECTION V. THE SPIRITUALITY OF MEASURE 245

19 The roots of spirituality and the limits of human mensuration . . 247
F. LeRon Shults

20 Worldview, measurement and ‘the roots of spirituality’ 250
Jeremy S. Begbie

Index 257
List of figures and tables

FIGURES

1.1 Types of measurement page 7
1.2 Concepts of measurement related to the group 8
1.3 Concepts of measurement associated with resources and commodities 9
1.4 Properties of features of the world that may be variously subject to measurement concepts 10
1.5 Concepts of measurement that may be associated with navigation 12
1.6 Concepts of measurement that give rise to, and arise from, awareness of time and cycles 14
2.1 Adriatic islands 21
2.2 Likely routes taking into account prevailing winds, currents and location of islands 22
2.3 Accounting for lateral drift 23
3.1 Pictographic tablet from Godin Tepe, Iran, ca. 3100 BC 27
3.2 Correspondence between cuneiform signs, pictographs and tokens 28
3.3 Plain tokens from Tepe Gawra, Iraq, ca. 5000 BC 29
3.4 Complex tokens from Uruk, Iraq, ca. 3300 BC 29
3.5 Ovoid tokens standing for jars of oil, from Girsu, Iraq, ca. 3300 BC 29
3.6 Envelope from Habuba Kabira, ca. 3300 BC, with ovoid impressed markings 30
3.7 Impressed tablet showing three wedges = three small measures of grain and two circular signs = two larger measures of grain, from Godin Tepe, Iran, ca. 3100 BC 30
3.8 Mesopotamian grain measure 30
4.1 Line bisection effect 36
4.2 How did the sapient mind move beyond approximation? 38
4.3 Three stages in the developmental trajectory of the Near Eastern concept of number 39
6.1 Khipu structures 55
6.2 Inka decimal administration 58
6.3 Khipu with colour banding 60
6.4 Khipu with colour seriation 61
6.5 Khipu with untied knots 61
6.6 A pair of matching khipus 62
List of figures and tables

6.7 The Puruchuco accounting hierarchy 65
7.1 Ox-hide ingot of copper carried by Cretan messenger depicted in an Egyptian tomb painting of the Eighteenth Dynasty 71
7.2 The melon-shaped stone weight from Aghia Photia, Crete, with incised Linear A inscription 72
7.3 Lead discoid-shaped balance weights from the settlement of Akrotiri on the island of Thera 72
7.4 Linear B tablet KN Oa 730 and the sign for the balance in Linear A script 73
7.5 A stone balance weight from Akrotiri on Thera 74
7.6 Linear B tablet KN Sc 245+8064 displaying the ideogram for chariot, followed by one digit 74
7.7 Linear B tablet KN F(2) 852+8071 featuring the numeral sign for 10,000 immediately preceded by the ideogram for grain 74
7.8 Linear B tablet KN Og 7504+7844 recording one talent of ivory 75
7.9 Linear B tablets KN Np (2) 860 and Np (2) 861 displaying the ideogram for saffron, followed by metrograms for weight and numerals 75
7.10 Linear B tablet KN F(2) 853+5947+6035 recording quantities of grain and olives measured in units of capacity for dry commodities 76
7.11 Linear B tablet KN K 700 displaying the account for 1,800 stirrup-jars in two entries of 900 each 76
7.12 Linear B tablet KN Lc (1) 527+7143+7331 with entries for textiles, followed by the unit of wool in quantities required for these qualities of cloth 78
7.13 The four houses of Complex Delta at Akrotiri, upper floor level 78
7.14 Lead weight from Mochlos with incised Linear A inscription 80
8.1 Spool-shaped balance weights from Tiryns with markings 89
8.2 Spool-shaped balance weights and a ‘macehead’ from EBA II Tarsus 92
8.3 Haematite balance weights from EBA I (?) and EB III Tarsus 93
8.4 Applying the Kendall formula on spool-shaped balance weights from the EBA Aegean 94
8.5 Distribution of balance weights of the Aegean (spool-shaped), the Near Eastern (sphendonoid haematite and other types of weights) and the Harappan types (cubic and other shapes) in the third millennium BC 96
8.6 Distribution of quadruple spirals, etched cornelian beads, lapis lazuli and flat beads in the third millennium BC 97
8.7 Balance weights from Steinfurth, Hesse, in Germany (Bz D) with application of the Kendall formula 99
9.1 Major traditions of prehistoric South Asia 106
9.2 Early Food Producing and Regionalization Era sites 108
9.3 Integration Era, Harappa Phase sites 109
9.4 Ravi Phase pottery 110
9.5 Ravi and Kot Diji Phase spindle whorls 111
9.6 Ravi and Kot Diji Phase steatite beads 112
9.7 Steatite microbeads: Ravi and Harappan Phase 113
9.8 Ravi Phase mud bricks 113
9.9 Cubical stone weight and seal impression: Kot Diji Period 114
9.10 Cubical stone weights: Harappan Period 115
9.11 Harappan bricks 117
9.12 Harappan well bricks 118
List of figures and tables

9.13 Harappa: Reconstruction of city walls and gateway, Mound E and ET 119
10.1 Map of Mohenjo-Daro with different tourist paths and the excavated areas 125
11.1 Aerial view of the Teotihuacan central zone, viewed from the south 131
11.2 The main façade of the Feathered Serpent Pyramid 135
11.3 General plan of the city’s central zone with possible measured distances in TMU 136
11.4 3D map of the Sun Pyramid 137
11.5 Plan of the Sun Pyramid complex with the Avenue of the Dead 139
11.6 Plan of the Moon Pyramid with the locations of seven overlapping construction stages and measurements in TMU 140
11.7 Plan of the Moon Plaza complex with measurements in TMU 142
11.8 Plan of the Citadel complex with measurements in TMU 143
11.9 General plan of the Teotihuacan city layout in AD 200–250 144
11.10 Reconstruction plan of the Teotihuacan city layout around AD 350 145
12.1 Aztec units of measure and their body referents 150
12.2 Symbols of Aztec units of measure 151
12.3 The Oztoticpac palace and its dimensions 152
12.4 The Oztoticpac palace adjusted to scale 153
12.5 The general proportions of the Oztoticpac palace 154
12.6 The Oztoticpac palace in yollotl units 155
12.7 Tropical year counts (366) of the Oztoticpac palace in yollotl units 156
12.8 Jupiter counts (399) of the Oztoticpac palace in yollotl units 157
12.9 Possible astronomical divisions of the Oztoticpac palace 158
12.10 Drawing of the Sacred Precinct at Tenochtitlan showing the central position of the main pyramid and its twin temples to Tlaloc and Huitzilopochtli 159
12.11 The Sacred Precinct of Tenochtitlan and various of its dimensions in Aztec units of linear measure 161
12.12 The Sacred Precinct of Tenochtitlan as organized by Venus counts (584) 162
12.13 The Sacred Precinct of Tenochtitlan showing solar counts (365) centered on the Templo Mayor 163
12.14 Distances based on the 260 ritual count at the Templo Mayor 164
12.15 Spacing of buildings at the Templo Mayor based on 360 counts 165
16.1 Footprints in a cosmogram from the Madrid Codex showing time’s 260-day journey via feet about the periphery of the sacred space of the gods 203
16.2 Copan (Honduras), Stela D, dating from the Classic Maya Period (eighth century AD), depicting the gods of number carrying their own bundles of time 204
16.3 A part of the user’s preface to the Eclipse Table in the Dresden Codex showing a column of 13 13s hastily squeezed in 206
16.4 Maya almanac concerning the burdens of particular periods of time, shown being carried by a goddess who personified the earth 207
16.5 An almanac in the Dresden Codex in which time’s pathway zigzags its way down the page 207
16.6 An almanac in the Madrid Codex related to deer hunting 208
List of figures and tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.7</td>
<td>Scene from a Mixtec codex showing a figure situated in a temple doorway looking toward the horizon over one of a number of putative crossed-stick sighting devices</td>
<td>208</td>
</tr>
<tr>
<td>16.8</td>
<td>Uxmal, the Governor's House, an oddly oriented Maya temple likely arranged to summon the resurrected ancestor lord Venus/Kukulcan</td>
<td>209</td>
</tr>
<tr>
<td>16.9</td>
<td>Pecked cross carved in the floor of Str. A-V, Uaxactun</td>
<td>210</td>
</tr>
<tr>
<td>16.10</td>
<td>Histograms showing distribution of a) tallies on segments of pecked cross petroglyphs and b) total tallies for all pecked cross petroglyphs in Mesoamerica</td>
<td>211</td>
</tr>
<tr>
<td>17.1</td>
<td>South America</td>
<td>216</td>
</tr>
<tr>
<td>17.2</td>
<td>Western South America</td>
<td>216</td>
</tr>
<tr>
<td>17.3</td>
<td>The Lake Titicaca Basin</td>
<td>219</td>
</tr>
<tr>
<td>17.4</td>
<td>Aerial view of the Island of the Sun</td>
<td>220</td>
</tr>
<tr>
<td>17.5</td>
<td>The Island of the Sun</td>
<td>220</td>
</tr>
<tr>
<td>17.6</td>
<td>The upper Inca road on the Island of the Sun</td>
<td>221</td>
</tr>
<tr>
<td>17.7</td>
<td>View of the sacred area on the Island of the Sun, distance view from the southeast</td>
<td>221</td>
</tr>
<tr>
<td>17.8</td>
<td>View of the sacred area on the Island of the Sun, closeup view from the southeast</td>
<td>222</td>
</tr>
<tr>
<td>17.9</td>
<td>The sacred area from the Tikani ridge</td>
<td>222</td>
</tr>
<tr>
<td>17.10</td>
<td>The Titikala or Sacred Rock, northeast side</td>
<td>223</td>
</tr>
<tr>
<td>17.11</td>
<td>The Titikala or Sacred Rock, southeast side</td>
<td>223</td>
</tr>
<tr>
<td>17.12</td>
<td>La Raya de los Incas, the wall separating the sacred area from the rest of the island</td>
<td>224</td>
</tr>
<tr>
<td>17.13</td>
<td>Sight line in the structure known as the Mama Ojila</td>
<td>224</td>
</tr>
<tr>
<td>17.14</td>
<td>The sight line of the winter (June) solstice from the Titikala to the Tikani towers</td>
<td>225</td>
</tr>
<tr>
<td>17.15</td>
<td>A view from the Mama Ojila to the road that descends from the La Raya de los Incas and site 019</td>
<td>225</td>
</tr>
<tr>
<td>17.16</td>
<td>Schematic view of the sight line and other features in the sanctuary area</td>
<td>225</td>
</tr>
<tr>
<td>18.1</td>
<td>Distribution of Neolithic enclosed sites</td>
<td>226</td>
</tr>
<tr>
<td>18.2</td>
<td>Distribution of the Middle Neolithic stroke-ornamented pottery culture (Stichbandkeramik) in Central Europe</td>
<td>230</td>
</tr>
<tr>
<td>18.3</td>
<td>Distribution of Middle Neolithic enclosed sites in Central Europe</td>
<td>231</td>
</tr>
<tr>
<td>18.4</td>
<td>Aerial photograph of the Goseck enclosure after removing the topsoil</td>
<td>232</td>
</tr>
<tr>
<td>18.5</td>
<td>Reconstructed enclosure in Goseck at its original location</td>
<td>232</td>
</tr>
<tr>
<td>18.6</td>
<td>Goseck excavation plan</td>
<td>233</td>
</tr>
<tr>
<td>18.7</td>
<td>Goseck excavation plan with disposition patterns</td>
<td>233</td>
</tr>
<tr>
<td>18.8</td>
<td>Diagram of the multi-scale approach to cult places</td>
<td>234</td>
</tr>
<tr>
<td>18.9</td>
<td>The Middle Neolithic enclosure in Meisternthal, Bavaria, Germany: a) geophysics, b) map with other enclosures, c) winter solstice, d) summer solstice, e) midsummer sunrise</td>
<td>236</td>
</tr>
<tr>
<td>18.10</td>
<td>The construction of the Goseck circular enclosure using perfect circles for comparison</td>
<td>237</td>
</tr>
<tr>
<td>18.11</td>
<td>Diagram of the Goseck enclosure indicating astronomical features</td>
<td>237</td>
</tr>
<tr>
<td>18.12</td>
<td>Bearing at the southeast entrance gate during the sunrise on the winter solstice (ca. 4900 BC)</td>
<td>237</td>
</tr>
<tr>
<td>18.13</td>
<td>Bearing at the southeast entrance with azimuth angles, showing entries in the palisades directly connected with the entrances in the circular enclosure</td>
<td>238</td>
</tr>
<tr>
<td>18.14</td>
<td>Sunrise and sunset during the summer solstice (ca. 4900 BC)</td>
<td>238</td>
</tr>
</tbody>
</table>
List of figures and tables

18.15 Timeline of the winter solstice (40–20 days before) in relation to the profile of the horizon in Goseck 239
18.16 Closeup of the southeast entrance of the reconstructed enclosure in Goseck at its original location (from outside and inside) 239

TABLES

5.1 Container terms as numeral bases in Mesoamerican languages 46
5.2 Epi-Olmec phrase represented by the sequence 7 16 3 2 13 48
5.3 Transcription of long count dates on Takalik Abaj Stela 5 49
5.4 Expressions for multiples of 100,000 in the Tecpatán Soke Vocabulario of 1733 51
6.1 Khipu record of summation, subdivision, and proportional values 57
6.2 Khipu with all decimal values 59
6.3 Khipu with two divisions of 100 59
6.4 Close match of khipus from Puruchuco 63
8.1 The conversion of units (talent, mina and basic units) in LBA Syria according to N. Parise (1984) 90
8.2 The 21 marked or inscribed balance weights of the third millennium from seven sites in the Aegean, Syria and Mesopotamia published to date 91
8.3 Multiples and common denominators of basic units 95
8.4 The convergence of the basic units used between the eastern Mediterranean and the Indus valley 101
8.5 Some multiples and common denominators of basic units: 7.83 (= 10), 9.4 (= 12), 11.75 (= 15) and 13.71 (= 17.5) 102
9.1 Indus tradition chronology: Harappa and early Mehrgarh 107
9.2 Early Harappan spindle whorls 111
9.3 Indus cubical weights from Harappa and Mohenjo-daro 115
11.1 Comparative data on the size of paired platforms in the Moon Plaza 137
11.2 Deviation from two north-south axes of the Avenue of the Dead to the midpoint of central structures or to the midpoint of paired platforms at the Moon Plaza 138
12.1 Aztec linear measures and their metric values 151
12.2 Dimensions of Nezahualcoyotl’s Palace in different Aztec measures 152
12.3 Dimensions of the different stages of the Templo Mayor in meters 159
12.4 Dimensions of the Templo Mayor in yollotli (0.8359 m) 160
16.1 Seasonal intervals at Teotihuacan and Uaxactun 212
List of contributors

ANTHONY F. AVENI is the Russell Colgate Distinguished Professor of Astronomy, Anthropology and Native American Studies at Colgate University. Two of his most recent books are Empires of Time and Stairways to the Stars: Skywatching in Three Great Ancient Cultures.

JEREMY S. BEGBIE is Associate Principal of Ridley Hall, Cambridge, and Honorary Professor of Theology at the University of Saint Andrews. A lecturer in a variety of departments at Ridley Hall and the University of Cambridge, he is the author of Theology, Music and Time.

PETER F. BIEHL is Assistant Professor in the Department of Anthropology and Associate Director of the Institute for European and Mediterranean Archaeology at the State University of New York at Buffalo. He has published widely on the meanings and functions of Neolithic circular enclosures, including (with F. Bertemes and H. Meller) Neolithic Circular Enclosures in Europe.

DAVID BROWN is a German Research Foundation Fellow in the Department of Ideology at the Free University of Berlin. He has previously been a British Academy Research Fellow in Oxford and Alexander von Humboldt Fellow in Berlin. He is the author of Mesopotamian Planetary Astronomy-Astrology.

JOHN E. CLARK is Professor of Anthropology at Brigham Young University and Director of the New World Archaeological Foundation of Brigham Young University based in Chiapas, Mexico. He has published numerous articles on Mesoamerica including “The Birth of Mesoamerican Metaphysics: Sedentism, Engagement, and Moral Superiority” in Rethinking Materiality: The Engagement of Mind with the Material World.

HELEN FARR is a Fellow of the McDonald Institute for Archaeological Research. She has contributed articles to a number of books including (with John Robb) “Substances in Motion: Neolithic Mediterranean ‘Trade’” in The Archaeology of Mediterranean Prehistory.

MICHAEL JANSEN is Professor at RWTH Aachen University of Technology and a senior member of the UNESCO International Technical Committee for Mohenjo-Daro.

JOHN JUSTESON is Professor in Anthropology at the State University of New York at Albany. Most recently, with Terrence Kaufman, he has produced a decipherment of a major portion of the Late Preclassic epi-Olmec hieroglyphs.
J. Mark Kenoyer is Professor of Anthropology at the University of Wisconsin, Madison. His publications focus on South Asia and include The Ancient South Asian World.

Mark Edward Lewis is Kwok-Ting Li Professor of Chinese Culture at Stanford University. He is the author of The Construction of Space in Early China.

Lambros Malafouris is the Balzan Fellow in Cognitive Archaeology at the McDonald Institute for Archaeological Research at Cambridge University. His recent publications include Philosophical Transactions of the Royal Society B 363, which he coedited.

Anna Michailidou is the Research Director for the Center for Greek and Roman Antiquity of the National Hellenic Research Foundation. She is the author of numerous articles and the editor of Manufacture and Measurement: Counting, Measuring and Recording Craft Items in Early Aegean Societies.

Iain Morley is a Fellow and Tutor in Archaeology and Anthropology at Keble College, Oxford, and until 2009 was a Fellow of the McDonald Institute for Archaeological Research at Cambridge University. He has written articles for numerous journals and books, including (with Colin Renfrew) Image and Imagination: A Global Prehistory of Figurative Representation.

Lorenz Rahmstorff is Assistant Professor and Research Assistant in the Department of Pre- and Protohistory at the University of Mainz.

Colin Renfrew is a Senior Fellow of the McDonald Institute for Archaeological Research and Emeritus Professor of Archaeology at Cambridge University. He has authored and edited numerous archaeological publications and books, including (with Iain Morley) Becoming Human: Innovation in Prehistoric Material and Spiritual Culture.

Denise Schmandt-Besserat is Emeritus Professor of Art and Middle Eastern Studies at the University of Texas at Austin. Her work on the origin of writing and mathematics was published in How Writing Came About, which was listed in American Scientist as one of the 100 books that shaped science in the 20th century.

F. Leron Shults is Professor of Theology and Philosophy at the University of Agder in Kristiansand, Norway. He has published a number of books, including most recently The Evolution of Rationality and Christology and Science, as well as numerous articles and book chapters on a variety of interdisciplinary themes.

Kate Spence is Lecturer in the Archaeology of Ancient Egypt at the University of Cambridge. She was a British Academy Post-Doctoral Fellow and a McDonald Institute Research Fellow in Cognitive Archaeology. She has published numerous articles and book chapters on aspects of Egyptian architecture.

Charles Stanish is Director of the Cotsen Institute of Archaeology and Professor of Anthropology at the University of California, Los Angeles. A Fellow of the American Academy, he has published several books including Ancient Titicaca: The Evolution of Southern Peru and Northern Bolivia.

Saburo Sugiyama is Professor at the Graduate School of International Cultural Studies, Aichi Prefectural University. His involvement with excavations at Teotihuacan in Mexico led him to publish Human Sacrifice, Militarism, and Rulership: Materialization of State Ideology at the Feathered Serpent Pyramid, Teotihuacan.

Gary Urton is Dumbarton Oaks Professor of Pre-Columbian Studies in the Department of Anthropology at Harvard University. He is the author of numerous articles and books on Inka civilization and Andean and Quechua cultures and societies, including Signs of the Inka Khipu.
The editors would like to thank the following people and organisations for their valuable contributions to making this volume possible:

The John Templeton Foundation, which funded the ‘Roots of Spirituality’ project, of which this volume is a product, and the ‘Measuring the World and Beyond’ symposium, which was the initial forum for these papers. Dr. Paul Wason at the JTF has consistently provided valuable advice and support throughout the project.

The Director, Fellows and staff of the McDonald Institute for Archaeological Research, Cambridge, which hosted the project and the symposium; the conference’s smooth running was greatly facilitated by the voluntary assistance of Pamela de Condappa and Sarah Ralph.

The late Dr. D. M. McDonald, whose interest in early metrology partly motivated his generous foundation of the Institute, and whose own writings on the subject formed the first of the monographs that it produced.

The Syndics of Cambridge University Press and our editor, Beatrice Rühl, for publishing this book; our production editor, Janis Bolster, and copy editor, Susan Thornton, for their excellent work; Dora Kemp, for preparing the index; and the two anonymous readers employed by Cambridge, who gave valuable feedback on the original manuscript.

Although regrettably unable to contribute themselves, Eleanor Robson, Sir Geoffrey Lloyd, Joyce Marcus, Michael Smith, Lothar Von Falkenhausen and Barry Kemp all made valuable suggestions of potential contributors to the symposium and volume, as did many of the contributors themselves.
The Archaeology of Measurement: Comprehending Heaven, Earth and Time in Ancient Societies