Contents

Preface
- What to expect in this book? xv
- Support of this book xv
- Set-up of this book xvi
- Acknowledgements xviii

1 Basic concepts
1.1 Individuals as dynamic systems 1
 1.1.1 The basic level of metabolic organisation 1
 1.1.2 Vague boundaries: the cell–population continuum 1
 1.1.3 Why reserves apart from structure? 2
 1.1.4 Metabolic switching is linked to maturation 4
1.2 Homeostasis is key to life 8
 1.2.1 Strong homeostasis: stoichiometric constraints 9
 1.2.2 Weak homeostasis: restrictions on dynamics 10
 1.2.3 Structural homeostasis: isomorphy 10
 1.2.4 Thermal homeostasis: ecto-, homeo- and endothermy 13
 1.2.5 Acquisition homeostasis: supply and demand 15
1.3 Temperature affects metabolic rates 17
 1.3.1 Arrhenius temperature 17
 1.3.2 Coupling of rates in single reserve systems 18
 1.3.3 States can depend on temperature via rates 19
 1.3.4 Patterns in Arrhenius temperatures 20
 1.3.5 van’t Hoff coefficient 21
 1.3.6 Temperature tolerance range 21
 1.3.7 Outside the temperature tolerance range 22
 1.3.8 Uncoupling of rates in multiple reserve systems 22
1.4 Summary 23

2 Standard DEB model in time, length and energy
2.1 Feeding 25
 2.1.1 Food availability is per volume or surface area of environment 25
 2.1.2 Food transport is across surface area of individual 26
Contents

2.1.3 Feeding costs are paid from food directly 31
2.1.4 Functional response converts food availability to ingestion rate 33
2.1.5 Generalisations: differences in size of food particles 35

2.2 Assimilation 36

2.3 Reserve dynamics 37
 2.3.1 Partitionability follows from weak homeostasis 38
 2.3.2 Mergeability is almost equivalent to partitionability 40
 2.3.3 Mechanism for mobilisation and weak homeostasis 41

2.4 The κ-rule for allocation to soma 42

2.5 Dissipation excludes overheads of assimilation and growth 44
 2.5.1 Somatic maintenance is linked to volume and surface area 44
 2.5.2 Maturation for embryos and juveniles 47
 2.5.3 Maturity maintenance: defence systems 50
 2.5.4 Reproduction overhead 51

2.6 Growth: increase of structure 51
 2.6.1 Von Bertalanffy growth at constant food 52
 2.6.2 States at birth and initial amount of reserve 54
 2.6.3 States at puberty 66
 2.6.4 Reduction of the initial amount of reserve 67

2.7 Reproduction: excretion of wrapped reserve 69
 2.7.1 Cumulative reproduction 71
 2.7.2 Buffer handling rules 73
 2.7.3 Post-reproductive period 74

2.8 Parameter estimation I: numbers, lengths and time 74

2.9 Summary of the standard DEB model 76

3 Energy, compounds and metabolism 79

3.1 Energy and entropy 79

3.2 Body mass and composition 81
 3.2.1 Mass quantified as gram 81
 3.2.2 Mass quantified as C-mole 83
 3.2.3 Composition of biomass 83

3.3 Classes of compounds in organisms 85
 3.3.1 Mineral compounds 86
 3.3.2 Organic compounds 87

3.4 Conversions of energy, mass and volume 92

3.5 Macrochemical reaction equations 94

3.6 Isotopes dynamics: reshuffling and fractionation 95
 3.6.1 Reshuffling 96
 3.6.2 Fractionation 97

3.7 Enzyme-mediated transformations based on fluxes 100
 3.7.1 From substrate to product 101
 3.7.2 Rejection vs. Synthesising Units 102
Contents

3.7.3 Four basic classes of transformations 104
3.7.4 Inhibition and preference 106
3.7.5 Co-metabolism 107
3.8 Metabolism 109
3.8.1 Trophic modes: auto-, hetero- and mixotrophy 109
3.8.2 Central metabolism 111
3.9 Summary 113

4 Univariate DEB models 114
4.1 Changing feeding conditions 114
4.1.1 Scatter structure of weight data 114
4.1.2 Step up/down in food availability 116
4.1.3 Mild starvation 116
4.1.4 Prolonged starvation 118
4.1.5 Shrinking and the turnover of structure 121
4.1.6 Migration 122
4.1.7 Dormancy 122
4.1.8 Emergency reproduction 123
4.2 Changing shapes 124
4.2.1 V0-morphs 124
4.2.2 V1-morphs 126
4.2.3 Static mixtures of morphs: rods 132
4.2.4 Dynamic mixtures of morphs 134
4.3 Mass aspects of univariate DEB models 138
4.3.1 Three basic fluxes 138
4.3.2 State versus flux 141
4.3.3 Mass investment in neonates 142
4.3.4 Composition of reserves and structural mass 142
4.4 Respiration 147
4.4.1 Respiration Quotient 149
4.4.2 Heat increment of feeding 151
4.5 Nitrogen balance 151
4.5.1 Urination Quotient 152
4.5.2 Ammonia excretion 153
4.6 Water balance 153
4.6.1 Plant–water relationships 154
4.7 Isotope dynamics in the standard DEB model 155
4.7.1 Three contributions to isotope fluxes 155
4.7.2 Changes in isotope fractions 157
4.7.3 Effects of temperature 158
4.7.4 Persistent products and reconstruction 159
4.7.5 Doubly labelled water 159
4.8 Enthalpy, entropy and free energy balances 160
4.8.1 Energy balance: dissipating heat 160
Contents

4.8.2 Indirect calorimetry: aerobic conditions 162
4.8.3 Substrate-dependent heat dissipation 163
4.9 Products 165
4.9.1 Fermentation 166
4.10 Parameter estimation II: mass, energy and entropy 168
4.10.1 Composition parameters 169
4.10.2 Thermodynamic parameters 170
4.11 Trajectory reconstruction 170
4.11.1 Reconstruction of food intake from growth data 170
4.11.2 Reconstruction of body temperature from growth data 173
4.11.3 Reconstruction from reproduction data 175
4.11.4 Reconstruction from otolith data 180
4.12 Summary 182

5 **Multivariate DEB models** 184
5.1 Several substrates 185
5.1.1 Diet and preference 185
5.1.2 Pseudo-faeces and variations in half-saturation coefficients 188
5.1.3 Oxygenic photosynthesis 189
5.1.4 Calcification 193
5.2 Several reserves 194
5.2.1 Growth 195
5.2.2 Reserve dynamics and excretion 195
5.2.3 Simultaneous nutrient limitation 196
5.2.4 Non-limiting reserves can dam up 197
5.2.5 Dioxygen flux 199
5.2.6 Ammonia–nitrate interactions 200
5.3 Several structural masses 202
5.3.1 Static generalisation of the κ-rule 202
5.3.2 Dynamic generalisation of the κ-rule 204
5.3.3 Roots and shoots: translocation 207
5.4 Summary 212

6 **Effects of compounds on budgets** 214
6.1 Ageing: effects of ROS 214
6.1.1 Weibull and Gompertz models for short growth periods 218
6.1.2 Ageing in unicellulars: stringent response 220
6.1.3 Functionality of ageing 221
6.2 Toxins and toxicants 221
6.3 One-compartment kinetics is the standard 223
6.3.1 Ionisation affects kinetics 224
6.3.2 Resistance at interfaces: film models 226
6.4 Energetics affects toxicokinetics 227
6.4.1 Dilution by growth 228
Contents

6.4.2 Changes in lipid content 229
6.4.3 Metabolic transformations 233

6.5 Toxicants affect energetics 234
6.5.1 No effects 236
6.5.2 Hormesis 237
6.5.3 Effects on survival 237
6.5.4 Effects on growth and reproduction 240
6.5.5 Receptor-mediated effects 244
6.5.6 Mutagenic effects 245
6.5.7 Effects of mixtures 247
6.5.8 Population consequences of effects 250
6.6 Summary 252

7 Extensions of DEB models 255
7.1 Handshaking protocols for SU's 255
7.1.1 Handshaking protocols for carriers 255
7.1.2 Handshaking protocols for chains 258
7.2 Feeding 261
7.2.1 Food deposits and claims 261
7.2.2 Fast food intake after starvation: hyperphagia 262
7.2.3 Digestion parallel to food searching: satiation 263
7.2.4 Social interaction 264
7.2.5 Diffusion limitation 266
7.2.6 Excretion of digestive enzymes 270
7.3 Digestion in guts 273
7.3.1 Smoothing and satiation 273
7.3.2 Gut residence time 275
7.3.3 Gut as a plug flow reactor 276
7.4 Division 279
7.5 Cell wall and membrane synthesis 281
7.6 Organelle–cytosol interactions and dual functions of compounds 282
7.7 Mother–foetus system 282
7.8 Extra life-stages 284
7.8.1 Pupa and imago 284
7.8.2 Metamorphosis in juvenile fish 287
7.9 Changing parameter values 288
7.9.1 Changes at puberty 289
7.9.2 Suicide reproduction 289
7.9.3 Adaptation of uptake capacity 291
7.9.4 Diauxic growth: inhibition and preference 291
7.10 Summary 293

8 Covariation of parameter values 295
8.1 Intra-specific parameter variations 296
Contents

8.1 Genetics and parameter variation 296
8.1.1 Genetics and parameter variation 296
8.1.2 Geographical size variations 297
8.2 Inter-specific parameter variations 299
8.2.1 Primary scaling relationships 300
8.2.2 Secondary scaling relationships 301
8.2.3 Tertiary scaling relationships 325
8.3 Quantitative structure–activity relationships 327
8.3.1 Kinetics as a function of partition 327
8.3.2 Film models 329
8.3.3 Bioconcentration coefficient 330
8.3.4 Effects as a function of partition coefficients 332
8.4 Interactions between QSARs and body size scaling relationships 333
8.5 Summary 335

9 Living together 336
9.1 Trophic interactions 336
9.1.1 Competition and species diversity 337
9.1.2 Syntrophy 337
9.1.3 Symbiosis 340
9.1.4 Biotrophy and parasitism 346
9.1.5 Predation and saprotrophy 346
9.2 Population dynamics 347
9.2.1 Non-structured populations 349
9.2.2 Structured populations 357
9.2.3 Mass transformation in populations 365
9.3 Food chains and webs 372
9.3.1 Behaviour of bi-trophic chains 373
9.3.2 Stability and invasion 376
9.4 Canonical Community 377
9.4.1 Mass transformations in communities 378
9.5 Summary 382

10 Evolution 384
10.1 Before the first cells 385
10.2 Early substrates and taxa 387
10.2.1 Evolution of central metabolism 388
10.2.2 Phototrophy 390
10.2.3 Diversification and interactions 392
10.3 Evolution of the individual as a dynamic system 393
10.3.1 Homeostasis induces storage 393
10.3.2 Maintenance enhances storage 396
10.3.3 Morphological control of metabolism 398
10.3.4 Simplification and integration 399
Contents

10.4 Merging of individuals in steps
 10.4.1 Reciprocal syntrophy 409
 10.4.2 Spatial clustering 411
 10.4.3 Physical contact: epibionts 412
 10.4.4 Weak homeostasis for structure 415
 10.4.5 Strong homeostasis for structure 415
 10.4.6 Coupling of assimilation pathways 417
 10.4.7 Weak homeostasis for reserves 418
 10.4.8 Strong homeostasis for reserves 418
 10.4.9 Cyclic endosymbiosis by specialisation 418

10.5 Multicellularity and body size 419
 10.5.1 Differentiation and cellular communication 420
 10.5.2 Emergence of life-stages: adult and embryo 421
 10.5.3 Further increase in maintenance costs 421
 10.5.4 Ageing and sleeping 421
 10.5.5 From supply to demand systems 422

10.6 Control over local conditions 422

10.7 Control over global conditions 424
 10.7.1 Water 424
 10.7.2 Carbon dioxide 425
 10.7.3 Methane 426
 10.7.4 Dioxide 427
 10.7.5 Albedo 427

10.8 Effects of climate on life 428

10.9 Summary 428

11 Evaluation
 11.1 Empirical models that are special cases of DEB theory 430
 11.2 A weird world at small scales 430
 11.3 Static Energy Budgets 433
 11.4 Net production models 435
 11.5 Summary 437

References 438
Glossary 487
Notation and symbols 494
Taxonomic index 504
Index 509