This book provides the first coherent and comprehensive treatment of the thermodynamics and gas dynamics of the practical Stirling cycle. Invented in 1816, the Stirling engine is the subject of world-wide research and development on account of unique qualities—silence, indifference to heat source, low level of emissions when burning conventional fuels, and an ability to function in reverse as heat pump or refrigerator.

The working cycle embraces all aspects of engineering thermodynamics, heat transfer (conduction and convection) and unsteady, compressible fluid flow. A wide-ranging problem in thermodynamic design is reduced to manageable proportions through application of the key principle of dynamic similarity. This draws together and unifies a vast literature on the central issue of the thermal regenerator, permits a unified approach to computer simulation of the gas processes and allows reduction of a substantial problem in gas circuit design to the use of simple charts. Performance optimization is also treated. Comprehensive appendices include conversion factors and tables of the properties of gases and metals required for the design of practical gas circuits.

The student of engineering will discover an instructive and illuminating case study revealing the interactions of basic disciplines. The researcher will find the groundwork prepared for any type of computer simulation that is contemplated. Those involved in the use and teaching of solution methods for unsteady gas dynamics problems will find a comprehensive treatment of nonlinear (Method of Characteristics) and linear wave approaches, for the Stirling machine provides an elegant example of the application of each. The book will be indispensable for all those involved in researching, designing or manufacturing Stirling prime movers, coolers and related regenerative thermal machines.
THERMODYNAMICS AND GAS DYNAMICS OF THE STIRLING CYCLE MACHINE
THERMODYNAMICS AND GAS DYNAMICS OF THE STIRLING CYCLE MACHINE

ALLAN J. ORGAN
Engineering Department, University of Cambridge
This book is dedicated to the memory of my parents,
Margaret and Albert Allan
Contents

Foreword by Theodore Finkelstein xvii

Preface xxiii

Notation xxix

Chapter 1 The Stirling cycle machine 1
 1.1 Origin 1
 1.2 The Stirling cycle machine in more recent times 3
 1.3 Thermodynamic design – the status quo 7

Chapter 2 Review of available theoretical treatments 9
 2.1 Background 9
 2.2 A framework for cycle analysis 10
 2.2.1 Equivalent, one-dimensional machine 10
 2.2.2 Problem formulation – finite cell vs finite difference 11
 2.2.3 Dimensional analysis as a basis for problem formulation 14
 2.2.4 Classification of cycle models – the CL-n classification 15
 2.2.5 Perturbation 16
 2.2.6 Offset linearization – ‘de-coupling’ 19
 2.2.7 Linear harmonic analysis (LHA) 19
 2.2.8 Perturbation and availability theory 20
 2.3 Experimental corroborations 21
 2.4 Established analytical approaches 23
 2.4.1 Basic machine operation 23
 2.4.2 Analyses of type CL-1 23
 2.4.3 More than one conservation law – lumped-parameter analyses 27
 2.4.4 Finite-cell vs gas dynamics formulation 34
Contents

2.5 Anatomy of a flexible ‘building bloc’ approach to cycle simulation 41
2.6 Optimization 43
2.7 Conclusions 50

Chapter 3 An ideal thermodynamic reference cycle 51
3.1 Ideal cycles 51
3.2 ‘Text-book’ cycle 52
3.3 Configuration 53
3.4 Ideal reference cycle and indicator diagram 55
3.5 Ideal cycle efficiency 58
3.6 Ideal cycle efficiencies and the real world 60

Chapter 4 Dynamic similarity 62
4.1 Towards a coherent analysis of the practical cycle 62
4.2 A one-dimensional gas-side model 63
4.3 Choice of groups. Buckingham’s ‘pi’ theorem 64
4.4 Confirmation of groups by normalization – energy equation for the gas 66
4.5 Heat flow at the gas–metal interface 68
4.6 Heat flow entirely within the solid 69
4.7 Compatibility of thermal capacity 69
4.8 Thermodynamic similarity 71
4.9 Exploitation of the thermodynamic similarity condition 72
4.10 The meaning of an optimum value of Eqn (4.9) 73

Chapter 5 Flow within the regenerator 76
5.1 State of the art 76
5.2 Flow passage geometry 79
5.3 Resistance coefficient of a porous medium 86
5.4 Compressibility 88
5.5 The ‘true’ Reynolds number 89
5.6 Summary 91

Chapter 6 The equivalent Stirling cycle machine 93
6.1 Thermodynamically-similar volume variations 93
6.2 Equivalent κ and π for sinusoidal volume variation 95
6.3 Values of phase angle and volume ratio for some common mechanisms 97
6.3.1 Simple crank and connecting rod with désiré offset 98
6.3.2 The symmetrical rhombic drive 99
6.3.3 Ross drive mechanism 101
6.3.4 Philips’ bell-crank mechanism 102
Contents

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>A three-conservation law cycle model</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Choice of analytical approach</td>
<td>105</td>
</tr>
<tr>
<td>7.2</td>
<td>Simplifying assumptions</td>
<td>106</td>
</tr>
<tr>
<td>7.3</td>
<td>Entropy creation rate</td>
<td>108</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Prandtl number, (N_{pr}) and Reynolds number (N_{re})</td>
<td>111</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Evaluation of entropy generation, (S'_{a}), due to heat transfer</td>
<td>112</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Evaluation of entropy generated, (S'_f), due to friction</td>
<td>114</td>
</tr>
<tr>
<td>7.4</td>
<td>Evaluation of work lost per cycle</td>
<td>116</td>
</tr>
<tr>
<td>7.4</td>
<td>Maps for indicated thermodynamic performance</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Extension to four conservation laws</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Thermal conduction</td>
<td>125</td>
</tr>
<tr>
<td>8.2</td>
<td>Heat transfer rates per wire</td>
<td>127</td>
</tr>
<tr>
<td>8.3</td>
<td>The diffusion equation</td>
<td>129</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Internal points</td>
<td>129</td>
</tr>
<tr>
<td>8.3.2</td>
<td>At the boundary</td>
<td>129</td>
</tr>
<tr>
<td>8.4</td>
<td>Discretization</td>
<td>130</td>
</tr>
<tr>
<td>8.5</td>
<td>Implementation</td>
<td>133</td>
</tr>
<tr>
<td>8.6</td>
<td>Available work lost due to conduction within the regenerator</td>
<td>135</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Full dynamic similarity</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Implications of full dynamic similarity – scaling</td>
<td>140</td>
</tr>
<tr>
<td>9.2</td>
<td>Choice of reference length</td>
<td>141</td>
</tr>
<tr>
<td>9.3</td>
<td>Performance maps and scaling</td>
<td>145</td>
</tr>
<tr>
<td>9.4</td>
<td>Available work lost in heat exchanger transient conduction</td>
<td>147</td>
</tr>
<tr>
<td>9.5</td>
<td>Reconsideration of reference length</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Lumped-parameter analysis</th>
<th>156</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>The lumped-parameter interpretation</td>
<td>156</td>
</tr>
<tr>
<td>10.2</td>
<td>Finkelstein's generalized thermodynamic analysis</td>
<td>156</td>
</tr>
<tr>
<td>10.2.1</td>
<td>The energy equation for the variable-volume spaces</td>
<td>157</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Evaluation of heat transfer coefficient</td>
<td>158</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Evaluation of variable-area term</td>
<td>160</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Discretization</td>
<td>160</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Some specimen results</td>
<td>163</td>
</tr>
<tr>
<td>10.3</td>
<td>Finkelstein's improved cycle description</td>
<td>164</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Defining equations</td>
<td>164</td>
</tr>
</tbody>
</table>
xii

Contents

10.3.2 Discretization and solution scheme 170
10.3.3 Specimen output from the simulation 173

Chapter 11 Implementation of the Method of Characteristics 176
11.1 State of the art 176
11.2 A test for the Method of Characteristics 180
11.3 The temperature-determined compressible flow-field 185
11.4 A unit process for area discontinuity 191

Chapter 12 The Stirling cycle as a linear wave phenomenon 196
12.1 The need for an alternative approach 196
12.2 Simplifying assumptions 197
12.3 Linear waves 198
12.4 Description of the flow-field in terms of linear waves 199
12.5 Normalization 203
12.6 Experimental results and comparison with computation 204
12.7 Comparison with the static ‘isothermal’ case 207
12.8 Acknowledgement 208

Chapter 13 Finite-cell solution schemes 209
13.1 Expectation vs reality 209
13.2 The Lagrange reference frame 212
13.3 A ‘one line’ description of gas circuit processes 213
13.4 A numerical example 216
13.5 Verifiability 219
13.6 The ‘building-bloc’ approach 220
13.6.1 Subdivision of the gas circuit 220
13.6.2 A single conservation law model 222
13.7 Conservation of momentum – a CL-2MF cycle model 226
13.8 Conservation of energy – a CL-2ME cycle model 229
13.9 Flow area discontinuities 232
13.10 Computational efficiency 237
13.11 Estimate of pressure gradient in the Lagrange scheme 239

Chapter 14 Optimization 241
14.1 Background 241
14.2 Precedents 241
14.3 Optimization algorithm 244
14.4 Optimization based on the Schmidt cycle 247
14.5 Optimization based on the adiabatic cycle 251

Chapter 15 The hot-air engine 257
15.1 Background 257
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2 Principle of operation and simplifying assumptions</td>
<td>258</td>
</tr>
<tr>
<td>15.3 Defining equations</td>
<td>261</td>
</tr>
<tr>
<td>15.4 Normalization – governing dimensionless groups</td>
<td>263</td>
</tr>
<tr>
<td>15.5 Entropy creation rate and lost available work</td>
<td>264</td>
</tr>
<tr>
<td>15.6 Computational considerations</td>
<td>265</td>
</tr>
<tr>
<td>15.7 Specimen velocity and temperature profiles</td>
<td>266</td>
</tr>
<tr>
<td>15.8 Computed indicated performance – performance maps</td>
<td>268</td>
</tr>
<tr>
<td>15.9 Experimental corroboration</td>
<td>270</td>
</tr>
</tbody>
</table>

Chapter 16 The way forward
16.1 Résumé
16.2 Stirling cycle analysis as an academic discipline
16.3 Multi-dimensional as opposed to one-dimensional modelling
16.4 Verification of numerical solutions
16.5 An overall strategy for thermodynamic design
16.6 Case study using chart form of conditions for thermodynamic similarity
16.7 Closure

Appendix I Stirling's patent No. 4081 of 1816
AII.1 Background
AII.2 Patent No. 4081 ‘Improvements for Diminishing the Consumption of Fuel, and in particular an Engine capable of being Applied to the Moving of Machinery on a Principle Entirely New’

Appendix II Ideal Stirling cycles
AII.1 Discontinuous piston motion – mass balance as a basis for a statement of instantaneous pressure
AII.2 Work per cycle – discontinuous piston motion
AII.3 Compression and expansion ratios, r and ε – discontinuous piston motion
AII.4 General isothermal cycle
AII.5 The Schmidt analysis
AII.5.1 Pressure as a function of crank angle
AII.5.2 Work per cycle, W_{cyc}
AII.5.3 Mass flow rates
AII.5.4 Application

Appendix III Ideal cycle with thermal resistance in series with source and sink

Contents

Appendix IV Instantaneous mass content of regenerator having linear gradient of temperature 304

Appendix V Kinematics of selected drive mechanisms 306
- AV.1 Simple crank and connecting rod with désaxé offset 306
- AV.2 Symmetrical rhombic drive mechanism 310
- AV.3 Ross drive mechanism 314
- AV.4 Philips’ bell-crank mechanism 317

Appendix VI Specifications of selected Stirling cycle machines 322
- AVI.1 General Motors GPU-3 322
- AVI.2 Philips MP1002CA air engine 325
- AVI.3 SM1 research machine 329

Appendix VII Entropy creation rate 332
- AVII.1 Entropy creation 332
- AVII.2 Application to flow with friction and heat transfer in a duct 332

Appendix VIII The adiabatic cycle analysis 334
- AVIII.1 The variable-volume working space 334
- AVIII.2 ζ as W_{cyc}/MRT 336
- AVIII.3 ζ as $W_{\text{cyc}}/p_{\text{ref}}V_{\text{ref}}$ 337
- AVIII.4 Implementation 339
- AVIII.5 The three-space machine 340

Appendix IX Mass rate and heat transfer in frictionless flow 343
- AIX.1 Assumptions 343
- AIX.2 Mass flow rate, m' 343
- AIX.3 Heat transfer per unit length, q'_{L} 343

Appendix X Selected design charts 345
- AX.1 Scope 345
- AX.2 Charts based on Schmidt analysis 346
- AX.3 Charts based on adiabatic analysis 351

Appendix XI Introduction to the Method of Characteristics 357
- AXI.1 Analytical models and solutions 357
- AXI.2 The conservation equations in Characteristic form 359
 - AXI.2.1 Conservation of mass 359
 - AXI.2.2 Conservation of momentum 359
 - AXI.2.3 Conservation of energy 360
- AXI.3 Determination of the characteristic directions 360
- AXI.4 Computational strategy 364
- AXI.4.1 Characteristics in the homentropic flow field 364
Contents

AXI.4.2 The unit process 364
AXI.5 The notion of wave ‘strength’ 366
AXI.6 Non-simple waves 367
AXI.7 Cases which may be dealt with as simple waves 368
AXI.7.1 Left- and right-running simple waves 368
AXI.7.2 Simple waves crossing 371
AXI.7.3 Simple wave reflected at a solid wall 371
AXI.7.4 Reflection from open end (subsonic flow) 371
AXI.8 The simple, finite wave in field and lattice interpretations 375
AXI.9 Finite simple compression and expansion waves 377
AXI.10 Generation of finite simple compression wave 379
AXI.11 Finite simple expansion wave 379
AXI.12 The unit process 381
AXI.12.1 Lattice method 381
AXI.12.2 Field method 383
AXI.12.3 The unit process – computational strategy 384

Appendix XII Frequently-used data 388

AXII.1 Perfect gases 388
AXII.2 Conversion factors – non-SI to SI 388
AXII.3 Fluid properties as a function of temperature 390
AXII.3.1 Coefficient of dynamic viscosity, μ 390
AXII.3.2 Thermal conductivity, k 392
AXII.4 Van der Waals’ equation 393
AXII.5 Properties of selected constructional materials 394
AXII.5.1 Nominal (ambient-temperature) thermal properties of some metals and alloys having application to gas circuit design 394
AXII.5.2 Thermal conductivity of selected stainless steels as a function of temperature 394
AXII.5.3 Specific heats of austenitic stainless steels as a function of temperature 395
AXII.5.4 Thermal diffusivity of annealed austenitic stainless steels as a function of temperature 396

References 397
Index of Proper Names 410
Subject index 412
Foreword

by Theodore Finkelstein

Much progress has been made in the technology and understanding of Stirling cycle machines in the 40 or so years during which I have been active in Stirling machine research and development. Although serial production is currently limited to special purpose machines, there is hope that the type may soon be in common use, as witnessed by the large-scale efforts by research and development groups in the USA, Japan and various European countries. As a consequence of these efforts, sponsored both by government and private industry, there has in recent years also been a surge of interest worldwide in theoretical aspects.

Stirling cycle machines present a curious paradox in that they are at the same time well known and unknown. They are well known because they have existed as engines for longer than most other engines in common use, and as heat pumps and refrigerators for about as long as current systems. Furthermore, there is no lack of literature references to the general – as well as to the detailed – aspects of Stirling technology. Yet the general knowledge and understanding of Stirling engines is still at such a low level that, even among experts, a wide divergence of opinion can be found, not only as to their basic applicability or desirable constructional features, but even as to the analytical approach appropriate for their design and optimization. This may be verified by anyone who attends one of the specialized meetings on the subject.

This dichotomy is the reason that, over the years, unrealistic applications have been proposed for Stirling machines, and prototypes have been constructed whose performance frequently fell short of theoretical predictions. Thus, the absence of commercial success in spite of evident advantages may possibly be correlated to the lack of adequate modelling techniques and of sound theoretical predictions of what these machines can actually accomplish.

An up-to-date, authoritative and comprehensive treatment of the
thermodynamic design of Stirling machines has therefore been overdue for a long time, and now it has finally arrived. The author of this specialized text-book is one eminently qualified for the task: Dr Organ is one of the leading theoreticians worldwide in this field, and his thorough and extensive treatise has been eagerly awaited by his co-workers in the subject. I have been privileged to know and exchange ideas with my friend and co-worker for a long time. Our relationship spans a quarter of a century, or longer if one counts correspondence conducted between us when he was working on Stirling machines in São Paulo, Brazil. Since then Dr Organ has returned to England and has become known as one of the few scientists worldwide who have devoted most of their working lives to the study of this area of scientific engineering. I am proud to say that since then he and I have maintained a two-man mutual help society engendered by a commonality of purpose, and agreement with each other’s analytical, theoretical and practical approaches to Stirling cycle machines.

Dr Organ is one of the foremost innovators in this speciality, having originated several advanced concepts, including the analysis of the fluid circuit in terms not of Eulerian coordinates (grid boundaries fixed in the space domain) but of Lagrange coordinates (grid boundaries movable in the space domain). It was he who first pointed out that the finite difference methods applied to fixed boundary elements in Stirling machine analysis are unable to deal with propagating discontinuities. He has been a pioneer in the application of the Method of Characteristics and in the use of linear wave analysis. His unorthodox techniques have not been widely understood when first published. His contributions to the field have been so advanced that comparatively few co-workers have adopted his techniques at this time, and the publication of this book will undoubtedly make use of his advanced analytical approaches more widespread.

Since the work is based on advanced principles of analysis and fluid dynamics, one might easily miss the central message: a very significant question to ask is ‘what should be the relative importance accorded in the first place to accurate modelling of a thermodynamic cycle, or in the second place to making an interpretation of the results of such modelling work so that it may be usable in machine design?’ The development of Stirling cycle machines must necessarily rest upon design procedures that can be presented in a simple and easily digested form. Thus, the researcher should have available to him such design tools as Z-charts, multi-variate graphs and optimization diagrams which cover a wide range of design parameters and which can easily be applied to a candidate design. These distilled design data must all be presented in normalized form involving non-dimensional
groupings of parameters. An examination of the text will clearly show that its ultimate aim is the achievement of design data in this form.

The reader will readily appreciate that, in order to compare different mechanizations adequately one has to define a valid normalized criterion, referred to in this text as specific cycle work, applicable universally to elementary, Schmidt-type analyses, through advanced treatments to computerized ‘number-crunching’ solutions of the appropriate partial differential equations. This abstraction is essential for the purpose of making the simulation results accessible to the design engineer.

Dr Organ’s investigational philosophy is best summed up in his own words: In a private communication to me he has stated (sic):

... my view of cycle analysis and simulation is, and always has been, that it is a tool to be developed, tested, placed at the service of the designer and then forgotten so that we may get on with the problems of layout, thermal stress, wear and the production of specimen engines ... the top priority is simplification of the approach to thermodynamic and flow design – the ultimate being elimination of the requirement for the computer in the process of designing a specific machine ...

The gist of this approach is that the ultimate aim is not an elaborate computer code, however elegant and sophisticated it may be in terms of physical modelling techniques or ‘structured’ programming, but the end result – concise and reliable, simple design charts. These tools must be based on individually computed points, which may obscure the fact that a comprehensive ‘number-crunching’ capacity was utilized for individual data points. Electronic computer studies can be made to range over any number of parametric variations, and it is ultimately not the computer study but the resulting design chart which is the usable end product. The argument is eloquently made in this textbook and is supported by sound theoretical deductions and examples.

This overall strategy is by no means in conflict with the fact that the author has delved as deeply into the black art of computer programming for Stirling cycle machines as any other person known to me. The painstaking quality of Dr Organ’s work is evident from even a cursory review of any section of the book. The accuracy of the material presented, combined with the diversity of carefully planned and always graceful illustrations make this book a pleasure to look through and a valuable addition to any reference library. It is refreshing to note that, in spite of the weighty subject the book is neither pedantic nor pompous, but that the wording has originality and even lightheartedness in places and is a pleasure to read.

This text may be used at two levels: A first use is for the experienced practitioner in the field who may concentrate on one particular topic, and
Foreword

thus study the section devoted to it without reference to the other parts, since one of the outstanding merits of this book is that most parts segregated by subject matter are written in a stand-alone fashion. A second use will be for the student wishing to acquire an understanding, and a working knowledge of most of the practical approaches to the thermodynamic analysis of Stirling cycle machines. Thus this book should be suitable for reference as well as for a text of an advanced academic course. It is confidently expected to become a standard textbook and reference work on this topic.

The thermodynamic analysis of Stirling cycle machines is treated on the assumption that the reader has adequate background in the mathematical methods required, depending on the specific chapter. In some cases this includes such advanced topics as partial differential equations or matrix operations. Also presupposed is the fact that most serious applications of the theories presented require the use of up-to-date computers.

The text places into perspective and comprehensively deals with the main topic implied by the title. To this purpose it is structured so that first the reader is exposed to certain basics, then to progressively more advanced concepts until, towards the end of the book, he is thoroughly familiar with the fundamentals and methods deemed to be practical for the scientific analysis. Dr Organ does not attempt to make the book an all-inclusive reiteration of all that has been published before, unless it contributes to the current ‘state of the art’. Thus the main text is not cluttered with lengthy algebraic procedures that are archaic. Instead, the reader is referred to the original sources in the literature. Similarly, the author consigns related, but not directly applicable, portions of the text to appendices, where the smooth flow of the textual presentation might otherwise be impaired. This includes the closed-form solutions first derived by Schmidt, and amplified considerably by other investigators, and which are the basis required for the theoretical reference case only.

A prominent feature of this book is the organized manner in which the theoretical cycle analysis is presented, leading up from the author’s basic perception of the available avenues of approach to a rational analysis (Chapter 1) through a historical overview of the development of analytical tools in Chapter 2. The latter is not merely a recitation of scientific papers in the order in which they appeared, but a critical evaluation of the scientific foundation upon which they were based with reference to the conservation laws which were obeyed or violated in certain instances by previous investigators.

I am glad to benefit now from Dr Organ’s in-depth research and shall improve my own analysis by utilizing his formulations. It is my sincere hope
that the publication of this book will also make it easier for other workers in this field to optimize Stirling cycle machine proportions based on the improved analytical techniques here presented. This should ultimately be reflected in the emergence of a new generation of advanced and improved types of Stirling cycle machine.

Los Angeles

Theodore Finkelstein
Preface

An internationally-recognized authority on Stirling cycle machines† is on record as affirming that

It is clear that for these engines the principal impediment to success is not theoretical analysis, but practical design and application . . .

Against this claim, it is common experience that the simple analyses (Schmidt, isothermal, adiabatic, basic finite cell) are useless for ab initio thermodynamic design, that the acquisition of design know-how of proven worth in the form of licences is prohibitively costly, and that the work of developing suitable analytical and computational tools from scratch is monumental.

If Stirling cycle machines are to become a commercial reality there is clearly an urgent need for a raising of the threshold from which the work of thermodynamic design may start. It is accordingly a purpose of this text to provide the design methods which have so far been lacking. There is first of all (Chap. 2) a review – and, more importantly, a classification – of existing analytical methods. This will serve to introduce the terminology and some essential concepts. It will also highlight a number of anomalies between the way certain principles of thermodynamics and gas dynamics are used in the context of Stirling machines and elsewhere.

Chap. 3 will establish a proper ideal reference cycle in place of the thermodynamically inconsistent reference standard commonly referred to. It will demonstrate that the margin between the efficiency of the ideal cycle and that of the practical counterpart is inevitable rather than the result of inappropriate design.

Chap. 4 demonstrates the benefits of applying to Stirling cycle analysis and design the principles of dynamic similarity. (While these principles are

regarded as indispensable in most branches of engineering – including the
criufically pertinent areas of heat transfer and fluid flow – the benefits of
working in terms of characteristic dimensionless groups have clearly not been
apparent to the majority of Stirling analysts.) The chapter introduces for the
first time the notion of thermodynamic similarity for use at the preliminary
stages of design.

Crucial to the performance of Stirling machines is the regenerator, so it is
ironic that detailed investigation into the inner workings of this component
has tended to be a less attractive option than the ‘black box’ approach. Chap.
6 directs attention to the vast body of work dealing with flow through the
wire gauze, very little of which has found its way into the science of Stirling
machine design.

Chap. 5 develops an approach to cycle modelling having special relevance
to the task of thermodynamic design: formulation in terms of the principles
of Chap. 4 permits a single computational run to map the entire performance
everse of a whole class of thermodynamically similar machines. The result
is equivalent to tens of thousands of simulations of individual machines
operating at conditions specified in terms of absolute variables (rpm, \(p_{ref} \),
etc.). Performance is mapped graphically, and the result is a first step towards
the thermodynamic design of Stirling machines by sole reference to charts.
Chap. 6 extends the treatment to take into account the intricate transient
conduction phenomenon internal to individual wires of the regenerator gauze.

A facility essential to any area of design is scaling: if it is not possible to
create a new machine of arbitrarily increased (or decreased) size from a
prototype of known performance, then the work of design and development
becomes an inordinately costly and unattractive proposition. The key to
scaling lies with dynamic similarity: Chap. 9 identifies the dimensionless
combinations of variables which determine similarity of thermodynamic
performance between geometrically identical machines of different sizes, and
illustrates the rôle of the performance map in the scaling process.

Chap. 10 shows that the lumped-parameter approach to modelling reformulates
directly in terms of the same combinations of dimensionless variables.
It deals with the problem of specifying realistic coefficients of convective heat
transfer for the variable-volume spaces.

Chap. 2 expressed concern at the fact that much computational work in
the area of Stirling cycle machines makes use of numerical techniques which
are considered unsuitable for solution of the same equations applied to other
engineering problems. Chap. 11, with the aid of Appendix XI, introduces the
Method of Characteristic, universally recognized as yielding correct numerical
solutions to the equations of one-dimensional, unsteady, compressible
flow. The chapter applies the method to a searching test – a temperature discontinuity propagating in a heat exchanger passage. Comparison with the analytical solution reveals none of the arbitrary ‘numerical diffusion’ introduced by ad hoc fixed-grid schemes. Examples are given of simulations based on the Method of Characteristics, and the prospects discussed for the routine modelling of Stirling machines by this means.

The argument in favour of rigorous solution of the one-dimensional defining equations is weakened by recognition of the fact that there are respects in which these equations themselves fail to represent the gas processes of interest. The shortcoming is most marked in respect of flow through the regenerator where the assumption of one-dimensional flow cannot be justified on any grounds (Chap. 5). It would be unrealistic to consider looking into individual, local flow patterns with either fixed-grid or Characteristics methods, since several thousand subdivisions of the flow field would be called for, with no means of checking experimentally the realism of assumptions applied within individual computational cells. There is, on the other hand, a simplification which permits at least some features of the flow through the individual gauze to be recognized, and which allows each and every gauze (in a stack of some thousands) to contribute its individual effect to the overall computation. The assumption is that of linearity of pressure wave effects. Chap. 12 looks at the Stirling cycle gas circuit as a linear wave phenomenon and demonstrates the capability of linear methods to deal individually and collectively with an arbitrary number of regenerator gauzes.

In the search for a relatively straightforward integration scheme free of the vexed problem of artificial diffusion, Chap. 13 examines solutions based in Lagrange coordinates. There emerges immediately a gas process description so simple that it is virtually a ‘one-line’ cycle model. The Lagrange approach is amplified into a comprehensive cycle simulation in the form of a novel ‘building block’ architecture. One of several advantages of this form is the unprecedented scope it affords for checks of correct functioning. The simulation is applied to the Philips MP1002CA machine and comprehensive output obtained and discussed.

The ultimate use of cycle analysis is design of the optimum thermodynamic circuit. Given the problems of formulating a straightforward cycle analysis, the difficulties and pitfalls of extending to optimization promise to be numerous. Chap. 14 nevertheless makes a start on this most challenging of all aspects of thermodynamic modelling. Chap. 15 presents an analysis of the deceptively simple hot-air engine. Chap. 16 concludes.

It is pertinent to record that I have previously drafted two complete texts on the thermodynamics of Stirling cycle machines, discarding them wholesale
Preface

on coming to the realization that they were ‘writing for the sake of writing’ - mere compendia of thought current at the time. The present treatment differs in a number of respects, most importantly in uniting all the material around the principle of dynamic similarity (and its more flexible derivative, thermodynamic similarity). If unity had been the sole gain, a further attempt at a text would not have been justified. However, there has resulted in addition substantial simplification: that which previously appeared a monumental task of analytical and numerical modelling is now seen to lie within manageable bounds, the limits of which are set in terms of a modest number of characteristic dimensionless groups.

If the would-be designer will study the chapters which follow, he should at least be in a position to start work somewhat ahead of where the author began 28 years ago. In particular, if he takes on board the dynamic and thermodynamic similarity approaches, and calculates values of the characteristic dimensionless parameters for some specimen machine of known and acceptable performance, he may scale to a new design in the confidence that his new machine has no option but to deliver the predicted specific performance, since it is thermodynamically identical to its prototype. He must, of course, ensure that the new design does not introduce thermal shorting or seal leakage out of proportion to those of the prototype, and must bear in mind that when a machine is scaled, the quantity whose numerical value remains constant is specific cycle work: if this desired value of specific cycle work is attained in the new machine at very low rpm, (as determined by the scaling process) then power output is likely to be unacceptable; if at very high rpm, then inertia loads may be a problem. Guidance on dealing with these and other aspects of the fascinating problem of Stirling machine design is offered in the pages which follow.

My essential acknowledgement must be to my late father, Albert Allan: without the background of his enthusiasm for the toy hot-air engines he cherished as a child I should never have selected as my final year research project at the University of Birmingham a topic entitled ‘An Appraisal of the Hot Air Engine’. Supervisors and heads of department who have encouraged and made possible my subsequent work in this area include Professor B. N. Cole, (at that time Reader in Plasticity at the University of Birmingham), Professor F. C. Hooper at the University of Toronto, Professor S. A. Tobias at the University of Birmingham, Professor W. B. Gosney of King’s College, London, and Professors W. A. Mair, A. Shercliffe and J. Heyman of my present Department at Cambridge. Those familiar with the work of Dr T. Finkelstein will recognize his imprint on the aims, approach and style of every aspect of this text. My experimental and theoretical work has been
Preface

xxvii

generously supported over the years by the Science and Engineering Research Council and by the Procurement Executive of the Ministry of Defence.

The literature review of Chap. 2 and the linear wave treatment of Chap. 12 were originally published in the Proceedings of the Institution of Mechanical Engineers, Part C, in 1987 and 1989 respectively, and are reproduced here with the permission of the Council of the Institution. The Council also gives its approval for the use of all seven figures of Chap. 15.

The linear wave treatment was made possible through considerable assistance from Dr Ann Dowling of Cambridge University Engineering Department.

Reverting briefly to the opening theme, a statement by Glegg† is pertinent:

Theory is practice. Every device you can invent behaves exactly as the theory of its operation in the context of its surroundings.

With allowance for the terse wording, the claim identifies the indispensable rôle of analysis in design: to focus attention on the interaction between the natural laws underlying the behaviour of the physical system. When practical experiment identifies an unexpected feature of performance (frequently a shortfall) it is through manipulation of the symbolic model that the incomplete insight is most readily adjusted and a course of remedial action identified. Any who doubt may care to study developments in one of the most demanding of all areas of design – that of human powered flight. The recent sequence of emotive successes awaited Larrabee’s elegant definition of the optimum low-speed propellor in terms of classical airscrew theory.‡

The imperatives of engineering design are to be reckoned with. Expensive disappointment is the price of imagining otherwise.

Cambridge University Engineering Department

AJO

Notation

Where possible, lower-case English letter characters represent variables having dimensions. A Greek character tends to denote a dimensionless quantity. Where a suitable Greek character is not available for the purpose, an English character in bold may be used.

English letter symbols

\[a \quad \text{isentropic acoustic speed} = \sqrt{\gamma RT} \quad \text{m/s} \]

\[a, b \quad \text{constant in equation for van der Waals' gas, elements of 2 \times 2 matrix, } a_{11}, a_{12}, b_{11}, b_{12} \quad \text{m}^6 \text{ Pa/kg}^2 \]

\[b \quad \text{constants for general use, as required} \]

\[A_w \quad \text{wetted or exposed area} \quad \text{m}^2 \]

\[A_x \quad \text{free-flow or cross-sectional area} \quad \text{m}^2 \]

\[B \quad \text{Beale number, } W_{\text{brake}}/(p_{\text{ref}} V_{\text{ref}}) \]

\[c \quad \text{specific heat (of solid)} \quad \text{J/kg K} \]

\[c_v, c_p \quad \text{specific heats at constant volume and pressure respectively} \quad \text{J/kg K} \]

\[C_d \quad \text{coefficient of discharge} \]

\[C_f \quad \text{friction factor, } \tau_{\text{wall}}/\frac{1}{2} \rho u^2 \]

\[d \quad \text{diameter} \quad \text{m} \]

\[d_w \quad \text{diameter of individual wire of regenerator matrix} \quad \text{m} \]

\[D \quad \text{substantial derivative} \]

\[D \quad \text{diameter, nominal diameter of displacer} \quad \text{m} \]

\[D^* \quad \text{effective diameter} \quad \text{m} \]

\[E \quad \text{Euler number, 0.577215} \]
xxx

Notation

\(f(\cdot), g(\cdot) \)
functions defining left- and right-running waves
Pa

\(f_{ee}, f_{e} \)
variable volume – \(f_{ee}(\phi), f_{e}(\phi) \) made dimensionless by dividing through by respective amplitude, \(V_E, V_e \), so that values lie in range 0.0–1.0

\(F \)
force
N

\(F, G \)
friction parameter
\(\left(\frac{1}{2} \nu C_p u^2 \right) u / \left| u \right| \)
m/s²

\(F_e \)
complex constant with units of pressure
Pa

\(g \)
acceleration due to gravity
m/s²

\(G \)
mean mass velocity, \(\rho u \)
kg/m² s

\(h \)
coefficient of convective heat transfer
W/m² K

\(h \)
specific enthalpy
J/kg K

\(H \)
enthalpy
J/K

\(H \)
\(N_{ST} \cdot d\phi / 2\pi \), e.g., \(H_{be} = N_{ST_{be}} d\phi / 2\pi \)
(expansion exchanger)

\(i \)
square root of negative unity

\(k \)
(dimensional) discharge coefficient defined by Finkelstein
\(1 / \text{m s} \)

\(k_r \)
thermal conductivity of gas
J/s m K

\(k_r \)
permeability coefficient defined by Darcy’s law
m²

\(l \)
length
m

\(L \)
a fixed length – nominal distance between opposed faces of expansion and compression pistons in equivalent ‘one-dimensional’ Stirling cycle machine
m

\(L_j \)
length of \(j \)th flow passage element
m

\(L_d \)
nominal length of displacer
m

\(m \)
mass
kg

\(m' \)
mass flow rate
kg/s

\(M \)
mass of working fluid taking part in cycle
kg

\(N \)
revolutions per minute
1/min

\(N_c \)
Courant number, \(u\Delta t / \Delta x \)

\(N_t \)
Fourier modulus, \(a\Delta t / \Delta x^2 \)
Notation

- \(N_{nu} \): local, instantaneous Nusselt number, \(hd/k \)
- \(N_{ma} \): local, instantaneous Mach number, \(u/a \)
- \(N_{pr} \): local, instantaneous Prandtl number, \(\mu c_p/k \)
- \(N_{re} \): local, instantaneous Reynolds number, \(4pr_{\text{m}}/\mu \)
- \(N_{re}^* \): a Reynolds number defined in Chapter 5
- \(N_{\text{red}} \): local, instantaneous Reynolds number based on diameter, \(pr_{\text{d}}/\mu \)
- \(N_\rho \): revolutions per second, \(1/s \)
- \(N_{st} \): Stanton number, \(h/c_p G \)
- \(N_C \): characteristic Courant number, \(\Delta \rho/\Delta \lambda \)
- \(N_F \): characteristic Fourier number, \(\sigma/L_{\text{ref}}^{2} N_s \)
- \(N_H \): heat flux number, \(p_{\text{ref}} L_{\text{ref}} N_s R_H/K_r T_{\text{ref}} \)
- \(N_{\text{MA}} \): characteristic pressure coefficient or Mach number, \(N_s L_{\text{ref}}/\sqrt{(RT_{\text{ref}})} \)

NB In a review paper reported extensively in Chapter 2 the symbol \(N_F \) was used for \(N_{\text{MA}} \); and the definition included constant terms, viz, \(N_F = 2\pi N_s L_{\text{ref}}/\sqrt{(2RT_{\text{ref}})} \). The definition of Reynolds number was also different in the paper in question, viz: \(N_{\text{RF}} = 8\pi p_{\text{ref}} L_{\text{ref}}^{2} N_s/\mu_{\text{ref}} RT_{\text{ref}} \). Thus, \(N_F \approx 2\pi N_{\text{MA}}/\sqrt{2} \) and \(N_{\text{RF}} \) (Chap. 2) \(\approx 8\pi N_{\text{RF}} \)

- \(N_{\text{RF}} \): characteristic Reynolds number, \(p_{\text{ref}} L_{\text{ref}}^{2} N_s/\mu_{\text{ref}} RT_{\text{ref}} \)
- \(N_{SG} \): Stirling number, \(p_{\text{ref}}/N_s \mu = N_{\text{RF}}/N_{\text{MA}}^{2} \)
- \(N_{ST} \): a reference Stanton number, \(hA_{\text{ref}}/c_p M N_s \)
- \(N_{TC} \): thermal capacity ratio, \(T_{\text{ref}}/p r_c /p_{\text{ref}} \)
- \(N_s \): diffusivity number, \(N_s L_{\text{ref}}^{2} p r_c /k_r \)
- \(N_t \): rationalized temperature ratio, \(T_c/T\)
- \(n \): polytropic index
- \(p \): dimensionless number
- \(p \): number of items

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>absolute pressure</td>
<td>Pa, N/m²</td>
</tr>
<tr>
<td>(P)</td>
<td>wetted perimeter</td>
<td>m</td>
</tr>
<tr>
<td>(q^*)</td>
<td>rate of heat exchange per unit mass</td>
<td>J/kg s</td>
</tr>
<tr>
<td>(q')</td>
<td>rate of heat exchanged</td>
<td>J/s or W</td>
</tr>
<tr>
<td>(q_{\text{L}}')</td>
<td>rate of heat exchange per unit length of duct</td>
<td>J/m s</td>
</tr>
<tr>
<td>(Q)</td>
<td>heat exchanged</td>
<td>J</td>
</tr>
<tr>
<td>(r)</td>
<td>crank pin offset</td>
<td>m</td>
</tr>
<tr>
<td>(r_H)</td>
<td>hydraulic radius, (A_s/P)</td>
<td>m</td>
</tr>
<tr>
<td>(R_H)</td>
<td>characteristic hydraulic radius, (V_{\text{ref}}/A_{\text{ref}})</td>
<td>m</td>
</tr>
</tbody>
</table>
Notation

- **r** compression ratio, $V_{\text{min}}/V_{\text{max}}$ (= inverse of expansion ratio, ε)
- **r** a ratio of volumes in the ideal cycle in which piston motion is discontinuous.

 - (vol. of comp. space at which const. vol. transfer begins)/V_C

 - $r(\Sigma \mu_d + 1) - \Sigma \mu_d$
- **R** specific gas constant J/kg K
- **R** thermal resistance, $1/hA$ K/W
- **R** universal gas constant J/kmol K
- **s** specific entropy J/kg K
- **s_w** stroke (of piston or displacer) m
- **s_w** length of curve (e.g., of centre line of curved wire element) m
- **S** entropy J/K
- **t** independent variable, time s
- **t_w** radial thickness of wall of cylindrical heat exchanger tube m
- **T** absolute temperature K
- **T_{su}** Sutherland temperature K
- **u, U** velocity, "superficial" velocity in porous materials (Chap. 5) m/s
- **u** velocity normalized by reference speed $N_a l_{ref}$ or a_a
- **U** internal energy J
- **U()** step function defined in text
- **v** specific volume m3/kg
- **V** volume m3
- **V_E** volume displaced during stroke of expansion piston m3
- **V_C** volume displaced during stroke of compression piston m3
- **W** work or work/cycle J
- **W'** work rate J/s, W
- **x, y, z** independent variables, length m
- **X_{VE}** V_E/r_3
- **Y** regenerator gap width in hot-air engine m
- **Y_d, Y_p, Y_{cl}** fixed lengths defined in Appendix V m
- **Z** matrix 2×2
Greek characters

\(\alpha \)
phase angle (rad) between volume variations. Equal to piston phase angle in opposed-piston machine

\(\alpha_c \)
angle between axes of cylinders in V-configuration machine

\(\alpha_s \)
ratio of free flow area to frontal area

\(\varepsilon \)
expansion ratio, \(V_{\text{max}} / V_{\text{min}} \) (= 1/r)

\(\varepsilon^* \)
corresponds to r*. Ratio \(V_C / (\text{vol. of comp. space}) \) at which constant volume transfer begins) = 1/r*

\(\phi \)
crank angle (= \(\omega t \))

\(\Phi \)
dissipation function

\(\Phi^* \)
dimensionless dissipation function, \(\Phi / \omega^2 \)

\(\gamma \)
ratio of specific heats, \(c_p / c_v \)

\(\lambda \)
dimensionless length, \(x / L \) or \(x / L_{\text{ref}} \)
(in coaxial machine) ratio piston swept volume/displacer swept volume

\(\lambda_{bs} \)
ratio of bore to stroke

\(\lambda_h \)
dimensionless hydraulic radius, \(r_h / L_{\text{ref}} \) or \(r_h / R_h \)

\(\eta \)
efficiency (thermal or mechanical depending on subscript)

\(\theta \)
dimensionless discharge coefficient

dimensionless time in Mach plane, \(t / (L / a_e) \)

\(\kappa \)
volume ratio \(V_C / V_E = r_c / r_e \) for machine with equal bores

\(\mu \)
ratio of a volume to a reference volume, \(V / V_{\text{ref}} \)

\(\mu_D \)
normalized dead space, \(V_D / V_{\text{ref}} \), e.g., \(V_D / V_E \)

\(\mu_D^+ \)
‘additional’ dead space – amount by which the normalized compression-end dead space of a displacer-type (gamma) machine exceeds that of the otherwise identical coaxial (beta) machine. (Defined in text.)

\(\mu_v \)
ratio \(V_E / V_{\text{ref}} \) (= 1 if \(V_{\text{ref}} = V_E \))

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v, v(N_t))</td>
<td>reduced dead space = (\sum V_{di} T_{ref} / V_{ref} T_{di})</td>
</tr>
<tr>
<td>(\nu^, \nu^(N_t))</td>
<td>approximate expression for (v, v(N_t)) employed by some authors = (2 \sum V_{D_i} / (V_{e_i}(1 + N_t)))</td>
</tr>
<tr>
<td>(\pi)</td>
<td>a constant, 3.141592654</td>
</tr>
<tr>
<td>(\Pi)</td>
<td>pressure ratio of ideal cycle ((1 + \xi)/(1 - \xi))</td>
</tr>
<tr>
<td>(\rho)</td>
<td>density (\sigma, \sigma') dimensionless mass, (m/M), mass flow rate, (d(m/M)/d\phi)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>normalized temperature, (T/T_e)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>characteristic temperature ratio (T_e/T_{ref}). Subsequent to the review chapter (Chap. 2) a new characteristic temperature ratio is defined as (N_t = T_e/T_c). This new variable is thus the inverse of the characteristic quantity used elsewhere in the literature. (For reasons, see Chap. 2.)</td>
</tr>
<tr>
<td>(\xi)</td>
<td>(\sqrt{[1/N_t^2 + \kappa^2 + (2/N_t)\kappa \cos \alpha]/[1/N_t + \kappa + 2v(N_t)]})</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>specific cycle work – (W/p_{ref} V_{ref}) or (W/MRT_{ref}) etc.</td>
</tr>
<tr>
<td>(\omega)</td>
<td>angular speed (1/s)</td>
</tr>
</tbody>
</table>

Other characters

\(\phi_v \) volumetric porosity (e.g. of regenerator matrix)

\(\phi \) dimensionless density, \(\rho V_{ref}/M \)

Subscripts

brake relates to work or power measured at brake

c, C compression space
cv control volume
d dead (unswep) volume
ds dynamic similarity
e, E expansion space
gc gas circuit – equivalent to wfc (below)
gen generated (as in entropy generated)
h relating to heat exchanger – he, expansion exchanger, he compression
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>kinematics</td>
</tr>
<tr>
<td>mech</td>
<td>mechanical</td>
</tr>
<tr>
<td>n</td>
<td>nth item of</td>
</tr>
<tr>
<td>nom</td>
<td>nominal</td>
</tr>
<tr>
<td>o</td>
<td>optimum value of – e.g., κ_0, α_0</td>
</tr>
<tr>
<td>p</td>
<td>relating to pressure</td>
</tr>
<tr>
<td>r (or reg)</td>
<td>relating to regenerator</td>
</tr>
<tr>
<td>ref</td>
<td>a reference quantity</td>
</tr>
<tr>
<td>Sch</td>
<td>relating to Schmidt analysis</td>
</tr>
<tr>
<td>Su</td>
<td>Sutherland</td>
</tr>
<tr>
<td>sw</td>
<td>swept</td>
</tr>
<tr>
<td>th</td>
<td>thermal</td>
</tr>
<tr>
<td>ts</td>
<td>thermodynamic similarity case</td>
</tr>
<tr>
<td>w (or wetted)</td>
<td>wetted (as in heat exchanger wetted area)</td>
</tr>
<tr>
<td></td>
<td>wall (as in T_w, t_w)</td>
</tr>
<tr>
<td></td>
<td>wire (as in d_w)</td>
</tr>
<tr>
<td>wfc</td>
<td>working fluid circuit</td>
</tr>
<tr>
<td>x, y, z</td>
<td>in x, y, z coordinate direction</td>
</tr>
<tr>
<td>underline</td>
<td>mean value</td>
</tr>
</tbody>
</table>