
1

Introduction

1.1 Basic characteristics of constraint programming 1
1.2 Applications of constraint programming 3
1.3 A very short history of the subject 5
1.4 Our approach 6
1.5 Organisation of the book 6

1.1 Basic characteristics of constraint programming

T HIS BOOK IS about constraint programming , an alternative ap-
proach to programming which relies on a combination of techniques
that deal with reasoning and computing . It has been successfully

applied in a number of fields including molecular biology, electrical engineer-
ing, operations research and numerical analysis. The central notion is that
of a constraint. Informally, a constraint on a sequence of variables is a re-
lation on their domains. It can be viewed as a requirement that states which
combinations of values from the variable domains are admitted. In turn, a
constraint satisfaction problem consists of a finite set of constraints,
each on a subsequence of a given sequence of variables.

To solve a given problem by means of constraint programming we first
formulate it as a constraint satisfaction problem. To this end we

• introduce some variables ranging over specific domains and constraints
over these variables;

• choose some language in which the constraints are expressed (usually a
small subset of first-order logic).

This part of the problem solving is called modeling . In general, more than

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

one representation of a problem as a constraint satisfaction problem exists.
Then to solve the chosen representation we use either

• domain specific methods,

or

• general methods,

or a combination of both.
The domain specific methods are usually provided in the form of im-

plementations special purpose algorithms. Typical examples are:

• a program that solves systems of linear equations,
• a package for linear programming,
• an implementation of the unification algorithm, a cornerstone of auto-

mated theorem proving.

In turn, the general methods are concerned with the ways of reducing
the search space and with specific search methods . The algorithms that
deal with the search space reduction are usually called constraint propaga-

tion algorithms, though several other names have been often used. These
algorithms maintain equivalence while simplifying the considered problem.
They achieve various forms of local consistency that attempt to approx-
imate the notion of (global) consistency. The (top down) search methods
combine various forms of constraint propagation with the customary back-
track and branch and bound search.

The definition of constraint programming is so general that it embodies
such diverse areas as Linear Algebra, Global Optimization, Linear and In-
teger Programming, etc. Therefore we should stress one essential point. If
domain specific methods are available they should be applied instead of the
general methods. For example, when dealing with systems of linear equa-
tions, the well-known linear algebra algorithms are readily available and it
does not make sense to apply to these equations the general methods.

In fact, one of the aims of constraint programming is to look for efficient
domain specific methods that can be used instead of the general methods
and to incorporate them in a seamless way into a general framework. Such
a framework usually supports

• domain specific methods by means of specialised packages, often called
constraint solvers ,

• general methods by means of various built-ins that in particular ensure
or facilitate the use of the appropriate constraint propagation algorithms
and support various search methods.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


1.2 Applications of constraint programming 3

Once we represent a problem as a constraint satisfaction problem we need
to solve it. In practice we are interested in:

• determining whether the chosen representation has a solution (is consis-
tent),

• finding a solution, respectively, all solutions,
• finding an optimal solution, respectively, all optimal solutions w.r.t. some

quality measure.

After this short preview we can formulate the following basic characteris-
tics of constraint programming:

Two Phases Approach: The programming process consists of two phases:
a generation of a problem representation by means of constraints and
a solution of it. In practice, both phases consist of several smaller
steps that can be interleaved.

Flexibility: The representation of a problem by means of constraints is very
flexible because the constraints can be added, removed or modified.
This flexibility is inherited by constraint programming.

Presence of Built-ins: To support this approach to programming several
built-in methods are available. They deal with specific constraint
solvers, constraint propagation algorithms and search methods.

An additional aspect brought in by constraint programming is that model-
ing by means of constraints leads to a representation of a problem by means
of relations. This bears some resemblance to database systems, for instance
relational databases. In fact, constraints are also studied in the context of
database systems. They are useful in situations where some information, for
instance the definition of a region of a map, needs to be provided implicitly,
by means of constraints on reals.

The difference is that in the context of database systems the task consists
of efficiently querying the considered relations, independently on whether
they are defined explicitly (for instance by means of tables) or implicitly (for
example by means of recursion or inequalities). In contrast, in constraint
programming the considered relations are usually defined implicitly and the
task consists of solving them or determining that no solution exists. This
leads to different methods and different techniques.

1.2 Applications of constraint programming

Problems that can be best solved by means of constraint programming are
usually those that can be naturally formulated in terms of requirements,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

general properties, or laws, and for which domain specific methods lead to
overly complex formalisations. Constraint programming has already been
successfully applied in numerous domains including:

• interactive graphic systems (to express geometric coherence in the case of
scene analysis),

• operations research problems (various optimization problems, in particu-
lar scheduling problems),

• molecular biology (DNA sequencing, construction of 3D models of pro-
teins),

• business applications (option trading),

• electrical engineering (location of faults in the circuits, computing the
circuit layouts, testing and verification of the design),

• numerical computation (solving polynomial constraints with guaranteed
precision),

• natural language processing (construction of efficient parsers),

• computer algebra (solving and/or simplifying equations over various al-
gebraic structures).

More recent applications of constraints involve generation of coherent mu-
sic radio programs, software engineering applications (design recovery and
code optimization) and selection and scheduling of observations performed
by satellites. Also, constraint programming proved itself a viable approach
to tackle certain computationally intractable problems.

While an account of most of these applications cannot be fit into an in-
troductory book, like this one, an interested reader can easily study the
research papers on the above topics, after having acquainted himself/herself
with the methods explained in this book.

The growing importance of this area can be witnessed by the fact that
there are now annual conferences and workshops on constraint programming
and its applications that consistently attract more than one hundred (oc-
casionally two hundred) participants. Further, in 1996 an (unfortunately
expensive) journal called ‘Constraints’ was launched. Also, several special
issues of computer science journals devoted to the subject of constraints
have appeared. But the field is still young and only a couple of books on
this subject have appeared so far. This led us to writing this book.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


1.3 A very short history of the subject 5

1.3 A very short history of the subject

Before we engage in our presentation of constraint programming, let us
briefly summarise the history of this subject. It will allow us to better
understand the direction the field is heading.

The concept of a constraint was used already in 1963 in an early work
of I. Sutherland on an interactive drawing system SKETCHPAD. In the
seventies various experimental languages were proposed that used the notion
of constraints and relied on the concept of constraint solving.

The concept of a constraint satisfaction problem was also formulated in the
seventies by researchers in the artificial intelligence (AI). They also identified
the main notions of local consistency and the algorithms that allow us to
achieve them. Independently, various search methods were defined. Some of
them, like backtracking can be traced back to the nineteenth century, while
others, like branch and bound, were defined in the context of combinatorial
optimization. The contribution of constraint programming was to identify
various new forms of search that combine the known techniques with various
constraint propagation algorithms. Some specific combinations were already
studied in the area of combinatorial optimization.

In the eighties the first constraint programming languages of importance
were proposed and implemented. The most significant were the languages
based on the logic programming paradigm. This led to a development of
constraint logic programming , an extension of logic programming by
the notion of constraints. The programming view that emerged led to an
identification of constraint store as a central concept. Constraint propa-
gation and various forms of search are usually available in these languages
in the form of built-ins.

In the late eighties and the nineties a form of synthesis between these
two developments took place. The researchers found various new applica-
tions of constraint programming, most notably in the fields of operations
research and numerical analysis. The progress was often achieved by iden-
tifying important new types of constraints and new constraint propagation
algorithms. One also realised that further progress may depend on a com-
bination of techniques from AI, operations research, computer algebra and
mathematical logic. This turned constraint programming into an interesting
hybrid area, in which theoretical work is often driven by applications and
in turn applications lead to new challenges concerning implementations of
constraint programming.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

1.4 Our approach

In our presentation of the basic concepts and techniques of constraint pro-
gramming we strive at a streamlined presentation in which we clarify the
nature of these techniques and their interrelationship. To this end we or-
ganised the presentation around a number of simple principles.

Principle 1: Constraint programming is about a formulation of the prob-
lem as a constraint satisfaction problem and about solving it by
means of domain specific or general methods.

This explains our focus on the constraint satisfaction problems
and constraint solvers.

Principle 2: Many constraint solvers can be naturally explained using a
rule-based framework. The constraint solver consists then of a set
of rules that specify its behaviour and a scheduler. This viewpoint
stresses the connections between rule-based programming and con-
straint programming.

This explains our decision to specify the constraint solvers by
means of proof rules that transform constraint satisfaction problems.

Principle 3: The constraint propagation algorithms can be naturally ex-
plained as instances of simple generic iteration algorithms.

This view allows us to clarify the nature of the constraint prop-
agation algorithms. Also, it provides us with a natural method for
implementing the discussed constraint solvers, since a rule scheduler
is just another instance of a generic iteration algorithm.

Principle 4: (Top down) search techniques can be conceptually viewed as
traversal algorithms of the search trees.

This explains why we organised the chapter on search around the
slogan:
Search Algorithm = Search Tree + Traversal Algorithm,

and why we explained the resulting algorithms in the form of suc-
cessive reformulations.

1.5 Organisation of the book

The above explained principles lead to a natural organisation of the material.
Here is a short preview of the remaining chapters. In Chapter 2 we discuss
several examples of constraint satisfaction problems. We stress there that in
many situations several natural representations are possible. In Chapter
3 we introduce a general framework that allows us to explain the basics
of constraints programming. We identify there natural ingredients of this

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


1.5 Organisation of the book 7

framework. This makes it easier to understand the subject of the subsequent
chapters.

Then, in Chapter 4, we provide three well-known examples of com-
plete constraint solvers. They deal, respectively, with solving equations
over terms, linear equations over reals and linear inequalities over reals. In
turn, in Chapter 5 we introduce several notions of local consistency and
characterise them in the form of proof rules. These notions allow us to study
in Chapter 6 in more detail a number of incomplete constraint solvers that
involve Boolean constraints and linear and arithmetic constraints on integers
and reals.

In Chapter 7 we study the constraint propagation algorithms that allow
us to achieve the forms of local consistency discussed in Chapter 5. The
characterisation of these notions in the form of proof rules allows us to pro-
vide a uniform presentation of these algorithms as instances of simple generic
iteration algorithms. Next, in Chapter 8, we discuss various (top down)
search algorithms. We present them in such a way that one can see how these
algorithms are related to each other. Finally, in Chapter 9, we provide a
short overview of the research directions in constraint programming.

Those interested in using this book for teaching may find it helpful to
use the transparencies that can be downloaded from the following website:
http://www.cwi.nl/~apt/pcp.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


2

Constraint satisfaction problems:
examples

2.1 Basic concepts 9
2.2 Constraint satisfaction problems on integers 11
2.3 Constraint satisfaction problems on reals 16
2.4 Boolean constraint satisfaction problems 19
2.5 Symbolic constraint satisfaction problems 21
2.6 Constrained optimization problems 43
2.7 Summary 47
2.8 Exercises 48
2.9 Bibliographic remarks 51
2.10 References 52

T HE AIM OF this chapter is to discuss various examples of constraint
satisfaction problems (CSPs 2 in short). The notion of a CSP is very
general, so it is not surprising that these examples cover a wide

range of topics. We limit ourselves here to the examples of CSPs that are
simple to explain and that illustrate the use of general methods of constraint
programming. In particular, we included here some perennial puzzles, since,
as it has been recognised for some time, they form an excellent vehicle to
explain certain principles of constraint programming.

As already mentioned in Chapter 1 the representation of a problem as a
CSP is usually called modeling . The selected examples clarify a number
of aspects of modeling. First, as we shall see, some of the problems can
be formalised as a CSP in a straightforward way. For other problems the
appropriate representation as a CSP is by no means straightforward and
relies on a non-trivial ‘background’ theory that ensures correctness of the

2 For those knowledgeable in other areas of computer science: constraint satisfaction problems
have nothing do to with Communicating Sequential Processes, a programming notation for
distributed processes introduced by C.A.R. Hoare and also abbreviated to CSP.

8

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


2.1 Basic concepts 9

adopted representation. Also for several problems, more than one natural
representation exists.

When presenting the CSPs it is useful to classify them according to some
criterion. In general, the techniques used to solve CSPs depend both on
the domains over which they are defined and on the syntax of the used
constraints. In most examples we use some simple language to define the
constraints. Later, in Chapters 4 and 6, we shall be more precise and shall
discuss in detail specific languages in which the constraints will be defined.
But now it is too early to appreciate the role played by the syntax. So
we rather classify the CSPs according to the domains over which they are
defined. This explains the structure of this chapter.

First, we formalise in Section 2.1 the notion of a constraint and of a
CSP. Then, in Section 2.2 we introduce some well-known problems and
puzzles that can be naturally formalised as CSPs with integer domains. In
Section 2.3 we consider examples of problems the formalisation of which
leads to CSPs with variables ranging over reals. In turn, in Section 2.4 we
consider Boolean CSPs. These are CSPs in which the variables range over
the integer domain [0..1] or, equivalently, {false, true} and in which the
constraints are expressed by means of Boolean expressions.

An important class of CSPs are the ones in which the variables range over
non-numeric domains. We call them symbolic CSPs. They are considered
in Section 2.5. In case we are interested in finding an optimal solution to a
CSP we associate with each solution an objective function that we want to
minimise or maximise. This leads to a modification of a CSP that we call a
constrained optimization problem . They are considered in Section 2.6.

2.1 Basic concepts

As explained in the previous chapter constraint satisfaction problems, or
CSPs, are a fundamental concept in constraint programming. To proceed we
need to define them formally. The precise definition is completely straight-
forward. First we introduce the notion of a constraint.

Consider a finite sequence of variables Y := y1, . . ., yk where k > 0, with
respective domains D1, . . ., Dk associated with them. So each variable yi

ranges over the domain Di. By a constraint C on Y we mean a subset of
D1×· · ·×Dk. When k = 1 we say that the constraint is unary and when k =
2 that the constraint is binary . By a constraint satisfaction problem ,
or a CSP , we mean a finite sequence of variables X := x1, . . ., xn with
respective domains D1, . . ., Dn, together with a finite set C of constraints,
each on a subsequence of X. We write such a CSP as 〈C ; DE〉, where

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org


10 Constraint satisfaction problems: examples

DE := x1 ∈ D1, . . ., xn ∈ Dn and call each construct of the form x ∈ D a
domain expression. To simplify the notation we omit the ‘{ }’ brackets
when presenting specific sets of constraints C.

We now define the crucial notion of a solution to a CSP. Intuitively, a
solution to a CSP is a sequence of legal values for all of its variables such
that all its constraints are satisfied. More precisely, consider a CSP 〈C ; DE〉
with DE := x1 ∈ D1, . . ., xn ∈ Dn. We say that an n-tuple (d1, . . ., dn) ∈
D1 × · · · × Dn satisfies a constraint C ∈ C on the variables xi1 , . . ., xim if

(di1 , . . ., dim) ∈ C.

Then we say that an n-tuple (d1, . . ., dn) ∈ D1 × · · · × Dn is a solution to
〈C ; DE〉 if it satisfies every constraint C ∈ C. If a CSP has a solution, we
say that it is consistent and otherwise we say that it is inconsistent .

Note that in the definition of a constraint and of a CSP no syntax was
assumed. In practice, of course, one needs to define the constraints and
the domain expressions. In what follows we assume that they are defined
in some specific, further unspecified, language. In this representation it is
implicit that each constraint is a subset of the Cartesian product of the
associated variable domains. For example, if we consider the CSP 〈x <

y ; x ∈ [0..10], y ∈ [5..10]〉, then we view the constraint x < y as the set of
all pairs (a, b) with a ∈ [0..10] and b ∈ [5..10] such that a < b.

Let us illustrate these concepts by a simple example. Consider the se-
quence of four variables x, y, z, u ranging over natural numbers and the fol-
lowing three constraints on them: x3 +y3 +z3 +u3 = 100, x < u, x+y = z.
According to the above notation we write this CSP as

〈x3 + y3 + z3 + u3 = 100, x < u, x + y = z ; x ∈ N , y ∈ N , z ∈ N , u ∈ N〉,

where N denotes the set of natural numbers.
Then the sequence (1, 2, 3, 4) is a solution to this CSP since this sequence

satisfies all constraints. Indeed, we have 13 + 23 + 33 + 43 = 100, 1 < 4 and
1 + 2 = 3.

Finally, let us clarify one simple matter. When defining constraints and
CSPs we refer to the sequences (respectively subsequences) of variables and
not to the sets (respectively subsets) of variables. Namely, given a CSP
each of its constraints is defined on a subsequence and not on a subset of
its variables. In particular, the above constraint x < y is defined on the
subsequence x, y of the sequence x, y, z, u.

Also, the sequence z, y is not a subsequence x, y, z, u, so if we add to the
above CSP the constraint z = y + 2 we cannot consider it as a constraint
on z, y. But we can view it of course as a constraint on y, z and, if we wish,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12549-9 - Principles of Constraint Programming
Krzysztof R. Apt
Excerpt
More information

http://www.cambridge.org/9780521125499
http://www.cambridge.org
http://www.cambridge.org

