MICROMAGNETISM AND THE MICROSTRUCTURE OF FERROMAGNETIC SOLIDS

The main topic of this book is micromagnetism and microstructure as well as the analysis of the relations between characteristic properties of the hysteresis loop and microstructure. Also presented is an analysis of the role of microstructure in the fundamental magnetic properties (for example magnetostriction or critical behaviour) of crystalline and amorphous alloys. The authors apply the theory of micromagnetism to all aspects of advanced magnetic materials including domain patterns and magnetization processes under the influence of defect structures. Coverage includes modern developments in computational micromagnetism and its application to spin structures of small particles and platelets.

Based on the continuum theory of micromagnetism, the physical principles of modern permanent and soft magnetic materials are covered comprehensively. Magnetization processes in small particles are outlined on the basis of the Landau–Lifshitz–Gilbert equation including the effects of thermal fluctuations. Magnetic aspects of intermetallic compounds, nanocrystalline and amorphous alloys are considered in detail within the framework of nucleation and pinning phenomena. Measurements of high-field susceptibility in the approach to ferromagnetic saturation are shown to be an appropriate method for the analysis of magnetically active microstructures in ferromagnets. To demonstrate the power of the theory of micromagnetism, the authors present many examples showing that theoretical predictions are supported by experimental results.

This book will be of interest to researchers and graduate students in condensed matter physics, electrical engineering and materials science, and to industrial researchers working in the electrotechnical and recording industries.

HELmut KRONMÜLLER received the Dr. rer. nat. degree in 1958 from the Faculty of Physics at the Technische Hochschule, Stuttgart, Germany. In 1968 he became a Lecturer and in 1974 a Professor in Physics at the University of Stuttgart. In 1970 he became a Scientific Member of the Max Planck Society and a Member of the Board at the Max-Planck-Institut für Metallforschung, Stuttgart. Since 1987 he has been Director at the Institute and from 1992 to 1995 he acted in the temporary position of Managing Director. From 1993 to 2000 he was Chairman of the AG Magnetism of the German Physical Society.

The international reputation of the author is revealed by many nominations to organizing committees of conferences, memberships of scientific organizations and co-editorships of various scientific journals. His scientific work is contained in over 1000 publications including books and numerous review articles.

MANfred FÄHNLE was born in 1951. He was awarded his PhD with distinction from the University of Stuttgart in 1977. Since 1977 he has been a member of the scientific staff at the Max-Planck-Institut für Metallforschung, Stuttgart. In 1990 he became Associate Professor for Theoretical Physics at the Institute for Pure and Applied Physics at the University of Stuttgart. He has been a member of several national and international scientific committees.
MICROMAGNETISM AND THE MICROSTRUCTURE OF FERROMAGNETIC SOLIDS

HELmut KRONmüLLER
MANFRED FÄHNLE

Max-Planck-Institut für Metallforschung, Stuttgart, Germany
Contents

Acknowledgements

1 Introduction
 References
 Appendix: Units of magnetic properties

2 Magnetic Gibbs free energy
 2.1 Introductionary remarks
 2.2 Magnetic energy terms
 2.2.1 Exchange energy
 2.2.1.1 Short-range exchange interactions
 2.2.1.2 Long-range exchange interactions
 2.2.2 Magnetocrystalline anisotropy energy
 2.2.3 Magnetostatic energies
 2.2.4 Elastic potential of a ferromagnet
 2.2.4.1 Strain tensor in ferromagnetic materials
 2.2.4.2 Determination of strain tensors
 2.2.4.3 Derivation of the magnetoelastic potential

2.3 Summary
 References

3 Basic micromagnetic equilibrium conditions
 3.1 Static micromagnetic equations
 3.2 Micromagnetic equations in polar coordinates
 3.3 Micromagnetic equations in terms of swirls and magnetic charges
 3.4 Linearized micromagnetic equations
 References

4 Domain walls in crystalline and amorphous solids
 4.1 General remarks
 4.2 Bloch walls
Contents

4.3 Effect of magnetostrictive deformations 55
4.4 Effect of internal stresses 57
4.5 Bloch walls in cubic crystals 57
4.6 Néel walls in bulk materials and thin films 64
 4.6.1 General remarks 64
 4.6.2 Néel walls in bulk crystals 65
 4.6.3 Néel walls in thin films 66
 4.6.4 Phase diagrams of Néel and Bloch walls
 in thin films 69

References 70

5 Interaction of domain walls with defects 71
 5.1 Introductionary remarks 71
 5.2 Interaction energy of domain walls with point defects 71
 5.3 180°-wall in amorphous alloys with uniaxial anisotropy 74
 5.4 180°-wall in α-Fe 75
 5.5 Interaction forces of domain walls with point defects 75
 5.6 Interaction of Bloch walls with dislocations 75
 5.6.1 Straight dislocation lines 77
 5.6.1.1 Dislocations of length l parallel to the
 domain wall plane (x, y) 78
 5.6.1.2 Dislocations intersecting the domain walls 79
 5.6.2 Straight dislocation dipoles 80
 5.6.3 Dislocation loops 81
 5.7 Interaction of domain walls with planar defects 81
 5.7.1 Pinning by thin planar defects 81
 5.7.2 Pinning by extended planar defects 85
 5.7.3 Pinning by phase boundaries 86

References 88

6 Coercivity of modern magnetic materials 90
 6.1 Introduction 90
 6.2 Micromagnetism of hard magnetic materials 95
 6.2.1 Homogeneous rotation 96
 6.2.2 Inhomogeneous rotation by the curling mode 99
 6.2.3 Inhomogeneous rotation by the buckling mode 101
 6.2.4 Critical diameters of single domain particles 103
 6.2.4.1 Thermal stability limit 103
 6.2.4.2 Crossover diameter for nucleation
 processes 104
 6.2.4.3 Critical diameter for domain formation 104
 6.2.5 Comparison with experiment 107
Contents

6.3 Nucleation under oblique magnetic fields 108
6.3.1 Homogeneous rotation 108
6.3.2 Curling mode 113
6.4 Nucleation in magnetically soft regions 114
6.5 Nucleation in inhomogeneous misaligned grains 117
6.6 Micromagnetic analysis of the coercive field of modern permanent magnets 119
6.6.1 Nucleation versus pinning 119
6.6.2 Analysis of the temperature dependence of the coercive field 122
6.6.3 Nanocrystalline and composite nanocrystalline magnets 126
6.6.4 Nanostructured, nanocrystalline Sm$_5$Co$_{17}$-based permanent magnets 131
6.7 Alternative coercivity models – the nucleus expansion model 141

References 144

7 Statistical theory of domain wall pinning 148
7.1 Statistical pinning potential 148
7.2 Applications of the statistical pinning theory 151
7.2.1 Dislocations in crystalline metals 151
7.2.2 Dislocation dipoles 153
7.2.3 Point defects 155
7.2.4 Amorphous alloys 155
7.2.4.1 Intrinsic fluctuations of exchange and local anisotropy energy 156
7.2.4.2 Internal stress sources 158
7.2.4.3 Coercive field due to surface irregularities 161
7.2.5 Nanocrystalline alloys 164

References 172

8 Law of approach to ferromagnetic saturation and high-field susceptibility 174
8.1 Introduction 174
8.2 Approach to saturation in uniaxial crystals 176
8.3 Approach to saturation in cubic crystals 177
8.4 Approach to saturation in the presence of stress sources 177
8.4.1 Introduction 177
8.4.2 Isotropic spherical defects 179
8.4.3 Dislocation loops 183
8.4.4 Straight dislocation lines 184
8.4.5 Dislocation groups 187
8.4.6 Dislocation dipoles 191
8.4.7 Anisotropy of the high-field susceptibility 193
8.4.8 Amorphous alloys 196
 8.4.8.1 General remarks 196
 8.4.8.2 Magnetostatic fluctuations 198
 8.4.8.3 Magnetocrystalline fluctuations 200
 8.4.8.4 Magnetoelastic fluctuations 201
 8.4.8.5 Analysis of experimental results 207
8.4.9 Nonmagnetic holes and nonferromagnetic precipitations 217
References 224

9 Microstructure and domain patterns 225
 9.1 Origin of domain patterns 225
 9.2 Lamellar domain patterns 227
 9.2.1 Landau structure 227
 9.2.2 Kittel structure 228
 9.2.3 Partial Landau–Kittel structure 229
 9.2.4 Kittel-type structure for in-plane easy direction 231
 9.2.5 The μ^*-correction 232
 9.2.6 Branching of domains in hard magnetic materials 233
 9.3 Domain patterns in amorphous alloys 237
 9.3.1 As-quenched amorphous alloys 238
 9.3.2 Magnetic annealing of amorphous alloys 243
 9.3.3 Domain structure and magnetization processes 243
 9.3.4 Stress-induced magnetic anisotropy 247
 9.4 Stripe domains in thin ferromagnetic films 249
 9.5 Dislocations and domain patterns 255
 9.5.1 Introduction 255
 9.5.2 Domain patterns in plastically deformed Ni-single crystals 255
 9.5.3 Domain patterns in plastically deformed Fe-single crystals 261
 9.5.4 Micromagnetic background of the magnetoelastic coupling energy due to dislocations 263
 9.5.5 Ripple structures 269
References 272

10 Magnetic after-effects in amorphous alloys 274
 10.1 Introduction 274
 10.2 Double-well model of magnetic after-effects in amorphous alloys 275
 10.3 Stabilization energy of domain walls 278
 10.4 Formation of induced anisotropy 283
Contents

10.5 Basic experimental results 284
10.6 Concluding remarks 292
References 293

11 Magnetostriction in amorphous and polycrystalline ferromagnets 295
11.1 Outline of the problems 295
11.2 Polycrystalline model of amorphous ferromagnets 297
11.3 Basic computational ideas 299
11.4 Mathematical formalism 302
11.4.1 Balance-of-force method 302
11.4.2 Incompatibility method 306
11.4.3 Zeroth- and first-order terms 308
11.5 Results for the saturation magnetostriction of ferromagnets 310
11.6 Field dependence of magnetostriction 313
References 316
Appendix 317

12 Micromagnetic theory of phase transitions in spatially disordered spin systems 320
12.1 Classification of disordered spin systems 321
12.2 Phase transition in random exchange ferromagnets 323
12.2.1 Critical behaviour 323
12.2.2 Crossover regime to mean field behaviour 325
12.3 Molecular field theory and Landau–Ginzburg theory 327
12.4 Extended Landau–Ginzburg theory 332
12.5 Correlated molecular field theory 334
12.5.1 Physical motivation 334
12.5.2 Calculation of the paramagnetic zero-field susceptibility 339
12.6 Random ferrimagnets, spin glasses and random anisotropy magnets 347
12.7 Dynamic correlated molecular field theory 350
References 353

13 Computational micromagnetism of thin platelets and small particles 356
13.1 Introduction 356
13.2 Applications of the finite difference method 357
13.3 Applications of the finite element method 364
13.3.1 Discretization and adaptive mesh refinement 364
13.3.2 Discretization of the Gibbs free energy used for computational micromagnetism 366
13.3.3 Magnetic structures and magnetization processes in thin platelets 371
Contents

13.3.4 Magnetic structures and magnetization processes in small particles 380
13.3.5 Soft magnetic particles in a hard magnetic matrix 384
13.3.6 Assemblies of nanocrystalline grains 385
References 399

14 Computational micromagnetism of dynamic magnetization processes 402
14.1 Landau–Lifshitz and Gilbert equations 402
14.2 Characteristic time ranges 405
14.3 Magnetization reversal in thin films 408
14.4 Discretization of the Landau–Lifshitz–Gilbert equation 409
14.5 Dynamic nucleation field 410
14.6 Dynamics of thermally activated reversal processes 416
14.6.1 Thermal fluctuations 416
14.6.2 Thermally activated relaxation 420
References 422
Appendix Scaling laws of the statistical pinning theory 423

Index 428
Acknowledgements

This book has been realized on the basis of research activities over several decades in the field of micromagnetic and microstructural problems of modern magnetic materials.

First of all the authors would like to express their heartfelt thanks to the Max Planck Society, which enabled research work over many years in the interdisciplinary fields of micromagnetism and microstructures.

The authors acknowledge gratefully the work of several generations of numerous diploma and Ph.D. students as well as postdocs, engaged on experimental and theoretical topics, which has contributed to the wide spectrum of this book.

The activities in the exciting field of micromagnetism and microstructures at the Max Planck Institute for Metals Research started with the thesis of one of the authors under his advisors, Ulrich Dehlinger and Alfred Seeger. Later on, intense discussions with colleagues active in the field of microstructures showed the importance of combined investigations of magnetic, mechanical and diffusional properties of ferromagnetic materials.

It has been the privilege of the authors to have had numerous discussions with the pioneers of micromagnetism, W.F. Brown, Jr. and W. Döring. The modern concepts of computational micromagnetism and of magnetoelastic interactions were initiated in discussions during a sabbatical year by W.F. Brown, Jr. at the Max Planck Institute for Metals Research in Stuttgart. Well-known results of these discussions are also in the early papers of La Bonte and Brown and of Alex Hubert and Arno Holz.

The authors are very grateful to those friends and colleagues with whom they had many stimulating discussions at conferences and during their stays as guest scientists at the Max Planck Institute for Metals Research in Stuttgart. In particular the authors would like to express their gratitude to A. Aharoni, A. Arrott, H. Blythe, J.H.V. Brabers, V.A.M. Brabers, K.H.J. Buschow, H.P. Chang, R.W. Chantrell, S. Chikazumi, R. Coehoorn, J.M.D. Coey, H.A. Davies, T. Egami, J. Fidler, J.J.M. Franse, F.J. Friedländer, H. Fujimori, M. Gibbs,
xii

Acknowledgements

The authors gratefully acknowledge stimulating discussions with Dr Dagmar Goll and her commitment to improving and eliminating errors in the manuscript.

Special thanks are expressed to Mrs Monika Kotz and Mrs Inge Schemminger who wrote the manuscript in LaTeX version, accepting with patience many corrections of the manuscript. The tremendous work of Mrs Therese Dragon and Dr Dagmar Goll who implemented the figures and made many proposals to improve their presentation is gratefully acknowledged.

Finally, the authors would like to thank their wives Sonja and Elke for their patience and continuous support during the writing of this book.

The following figures are published by kind permission of Elsevier Ltd. Global Rights Department, Oxford OX 5, 1DX, UK:

Fig. 5.6 reprinted from H. Kronmüller, ‘Micromagnetism in hard magnetic materials’, J. Magn. Magn. Mater. 7 (1978), 341.

Acknowledgements

Fig. 8.16 reprinted from H. Kronmüller and J. Ulner, ‘Micromagnetic theory of amorphous ferromagnets’, J. Magn. Magn. Mater. 6 (1977), 52.

Fig. 8.30 reprinted from M. Domann, H. Grimm and H. Kronmüller, ‘The high-field magnetization curve of amorphous ferromagnetic alloys’, J. Magn. Magn. Mater. 13 (1979), 81.

Fig. 9.7 reprinted from K.D. Durst, and H. Kronmüller, ‘Determination of intrinsic magnetic material parameters of Nd$_2$Fe$_{14}$B from magnetic measurements of sintered Nd$_{15}$Fe$_{77}$B$_8$ magnets’, J. Magn. Magn. Mater. 59 (1986), 86.

Fig. 9.28 reprinted from H. Kronmüller et al., ‘Magnetic properties of amorphous ferromagnetic alloys’, J. Magn. Magn. Mater. 13 (1979), 53.

xiv

Acknowledgements

Fig. 11.2 reprinted from M. Fähnle and J. Furthmüller, ‘Various contributions to magnetostriction in amorphous and polycrystalline ferromagnets’, J. Magn. Magn. Mater. 72 (1988), 6–12.

Fig. 5.8 reprinted from H. Kronmüller and D. Goll, ‘Micromagnetic theory of the pinning of domain walls at phase boundaries’, Physica B 319 (2002), 122.
Acknowledgements

Fig. 14.8 reprinted from J. Fidler et al., ‘Micromagnetic simulations of magnetization reversal in rotational magnetic fields’, Physica B 306 (2001), 112.