Cambridge University Press 978-0-521-11974-0 - Mathematical Foundations of Imaging, Tomography and Wavefield Inversion Anthony J . Devaney Index More information

Index

computed tomography, 362, 366

analytic signal, 44 angular-momentum operator, 99 angular spectrum, 143 angular spectrum and radiation pattern, 127 angular-spectrum expansion of the multipole fields, 161 angular-spectrum expansion: diffraction, 311 angular-spectrum expansion: EM fields, 468, 490 angular-spectrum expansion: forward and back propagation, 129 angular-spectrum expansion: generalized, 400 angular-spectrum expansion: in two space dimensions, 139 back propagation and the adjoint operator, 193 back propagation and time reversal, 210 back propagation: filtered, 206 back propagation: imaging, 201 back propagation: in terms of the multipole expansion, 155 back propagation: inhomogeneous background, 425 back propagation: inverse diffraction, 314 back propagation: inverse scattering problem, 425 Bessel functions, 112 Bessel functions: spherical, 100 Bojarski transform, 300 Bojarski transform: generalized, 304 Born and Rytov approximations: comparison, 378 Born approximation: comparison with DWBA, 417 Born approximation: distorted wave, 415 Born approximation: EM fields, 491 Born inversion: limited data, 344 boundary-value problem: Rayleigh-Sommerfeld, 72, 143 boundary-value problems: EM fields, 476 boundary-value problems: exterior, 105, 108, 114 boundary-value problems: Helmholtz equation, 65 boundary-value problems: interior, 19, 109 boundary-value problems: two space dimensions, 76 boundary-value problems: uniqueness, 70 Cauchy data, 2, 20

circularly symmetric objects, 366 circularly symmetric scatterers, 342 cloaking: active, 39 conjugate-wave radiation condition, 48 CT projection, 362 Debye representation, 479 diffraction, 285 diffraction: angular-spectrum expansion, 311 diffraction: Fraunhofer approximation, 313 diffraction: Fresnel approximation, 311 diffraction: from apertures, 309 diffraction: inverse, 314 diffraction theory: Kirchhoff approximation, 306 diffraction theory: Rayleigh-Sommerfeld formulation, 308 diffraction tomography, 367 diffraction tomography: circularly symmetric objects, 375 diffraction tomography: hybrid formulation, 367 diffraction tomography: ideal data, 378 diffraction tomography: in three space dimensions, 381 diffraction tomography: in two space dimensions, 368, 370 Dirichlet-to-Neumann map, 84, 132, 156 dispersive media, 45 distorted-wave Born approximation, 417 essentially non-radiating sources, 33, 63, 208 essentially non-scattering potentials, 270 Ewald limiting sphere, 256 Ewald sphere, 23, 56, 256 far field, 23 field back propagation, 59, 78, 79, 336, 431 field back propagation and radiation pattern, 133 field back propagation and the Fresnel transform, 150 field back propagation and the interior boundary-value problem, 157 field back propagation and the inverse boundary-value problem, 133 field back propagation and time reversal, 136, 176 field back propagation: EM fields, 470 field back propagation: from the EM radiation pattern, 485

field back propagation: from the radiation pattern, 158 filtered back-projection algorithm, 364

515

Cambridge University Press 978-0-521-11974-0 - Mathematical Foundations of Imaging, Tomography and Wavefield Inversion Anthony J. Devaney Index

More information

516	Index		
	filtered back propagation, 201	inverse diffraction: back propagation, 314	
	filtered back-propagation algorithm, 336, 339, 373 filtered back propagation algorithm; EM fields 402	inverse diffraction: Slepian–Pollak theory, 319	

dimensions, 342 forward and back propagation: EM fields, 472 forward and back propagation: in two space dimensions, 142 forward propagation: in terms of the multipole expansion, 155 Fourier integral, 2, 50 free field, 127 free-field propagator, 21, 59, 122, 174 Fresnel approximation, 147 Fresnel approximation in two space dimensions, 151 Fresnel transform, 147 Green function: conjugate wave, 120 Green function: Dirichlet and Neumann, 108 Green function: dyadic Green function, 464 Green function: frequency domain, 9, 50 Green function: Helmholtz equation, 50 Green function: in two space dimensions, 52, 114 Green function: incoming and outgoing wave, 9 Green function: incoming wave, 121 Green function: inhomogeneous medium, 388 Green function: Lippmann-Schwinger equation, 233 Green function: multipole expansion, 114 Green function: plane-wave expansion, 118 Green function: reciprocity, 389

filtered back-propagation algorithm: in two space

Green function: retarded and advanced, 7 Green function: symmetry, 71 Green function: time domain, 53, 54 Green function: wave equation, 6

Hankel functions, 112 Hankel functions: spherical, 100 Helmholtz equation, 9, 45, 333 Helmholtz equation: homogeneous, 99 Helmholtz equation: in one space dimension, 51 Helmholtz equation: in two space dimensions, 113 Helmholtz equation: inhomogeneous, 387 Helmholtz equation: potential scattering, 231 Helmholtz equation: vector, 102, 489 Helmholtz identities, 77 Helmholtz theorem, 461 Hilbert space, 188 Hilbert space: adjoint operator, 191 Hilbert space: inverse scattering, 349 Hilbert space: SVD, 194 homogeneous isotropic medium, 460

incoming-wave radiation condition, 10, 48 initial-value problem, 20 initial-value problem: plane-wave solution, 91 integral equation: Porter–Bojarski, 174 inverse boundary-value problem, 79

inverse diffraction: SVD, 316 inverse scattering and back propagation, 321 inverse scattering and the ISP, 336, 350 inverse scattering and time reversal, 456 inverse scattering identity, 340 inverse scattering theory, 333 inverse scattering: antenna systems, 429 inverse scattering: arbitrary measurement surfaces, 354 inverse scattering: Born approximation, 336 inverse scattering: constraints, 359 inverse scattering: distorted-wave Born approximation, 423 inverse scattering: EM fields, 493 inverse scattering: far-field data, 336 inverse scattering: far-field formulation, 424 inverse scattering: for surfaces, 320, 325 inverse scattering: for surfaces within the PO approximation, 323 inverse scattering: inhomogeneous background, 423, 426 inverse scattering: iterative algorithms, 357 inverse scattering: limited data, 358, 426, 430 inverse scattering: linearized formulation, 334 inverse scattering: multistatic data matrix, 429 inverse scattering: physical-optics approximation, 305 inverse scattering: pseudo-inverse, 353 inverse scattering: Rytov approximation, 361 inverse scattering: short-wavelength limit, 361 inverse scattering: SIRT algorithm, 359 inverse scattering: SVD solution, 353 inverse scattering: tomographic formulation, 360 inverse source problem, 169 inverse source problem and boundary-value data, 171, 177 inverse source problem and Cauchy data, 173 inverse source problem and surface sources, 179, 186 inverse source problem and time reversal, 187, 210 inverse source problem: antenna synthesis, 202 inverse source problem: EM fields, 479, 485 inverse source problem: far field, 206 inverse source problem: for wave equation, 169 inverse source problem: in one space dimension, 192 inverse source problem: in two space dimensions, 214 inverse source problem: inhomogeneous background, 408 inverse source problem: integral equation, 171 inverse source problem: limited data, 222 inverse source problem: Picard condition, 211 inverse source problem: pseudo-inverse, 198 inverse source problem: scalar wavelet field, 220

Cambridge University Press 978-0-521-11974-0 - Mathematical Foundations of Imaging, Tomography and Wavefield Inversion Anthony J . Devaney Index

More information

517	Index		
	inverse source problem; time domain integral	nlana waya aynangiongi timo domoin 00	
	inverse source problem: time-domain integral	plane-wave expansions: time domain, 90	
	ISP integral equation 180	plane waves in dispersive media, 92	
	ISF Integral equation, 180	plane waves, in dispersive media 94	
	Kirchhoff–Helmholtz representation: EM fields 467	plane waves: inhomogeneous 92 93	
	Kirchhoff–Helmholtz representation: frequency	point-spread function for the ISP 209, 218	
	domain. 58	polar coordinates, 113	
	Kirchhoff–Helmholtz representation: inhomogeneous	Porter–Bojarski integral equation, 59, 174, 183	
	background, 394	Porter–Bojarski integral equation: inhomogeneou	
	Kirchhoff–Helmholtz representation: time domain, 16	background, 395	
		projection-slice theorem, 364	
	Legendre polynomials, 101	projection-slice theorem: generalized, 371	
	Liouville-Neumann expansion, 288	pseudo-inverse, 407	
	Lippmann–Schwinger equation, 232		
	Lippmann–Schwinger equation: EM fields, 489	radiated field: angular-spectrum expansion, 125	
	Lippmann–Schwinger equation: formal solution, 234	radiated field: angular-spectrum expansion in	
		inhomogeneous background, 401	
	Maxwell equations, 459, 460	radiated field: EM fields, 473, 482	
	Maxwell equations: spatial frequency domain, 461	radiated field: Green-function solution, 14	
	multipole expansion, 236	radiated power, 25, 60, 163	
	multipole expansion of Dirichlet and Neumann Green	radiation pattern, 23, 129	
	runctions, 10/	radiation pattern and angular spectrum, 12/	
	function 104	radiation pattern: inhomogeneous background 20	
	multipole expansion of the radiated field 153	radiation problem: EM fields 464	
	multipole expansion of the radiated field, 155 multipole expansion: EM fields 479, 482	radiation problem: frequency domain 43	
	multipole expansion: in two space dimensions 251	radiation problem: frequency domain, 45	
	multipole expansion: scalar wave, 104	radiation problem: in two space dimensions, 57, 1	
	multipole expansion: scattered field, 249	radiation problem: inhomogeneous background, 3	
	multipole expansions and angular-spectrum	radiation problem: solution in an inhomogeneous	
	expansions, 161	background, 393	
	multipole expansions: in two space dimensions, 160	radiation problem: time domain, 12	
	multipole fields: evanescent-wave components, 110	Rytov approximation: short-wavelength limit, 274	
	multipole fields: plane-wave expansions, 110	Rytov transformation, 275	
	Neumann functions, 112	scalar wavelet field, 212	
	Neumann functions: spherical, 100	scalar wavelet: in two space dimensions, 220	
	non-radiating sources, 29, 63	scattered energy: optical theorem, 245	
	non-radiating sources: inhomogeneous background,	scattered field: computing, 246	
	402	scattered field: multipole expansion, 249	
	non-radiating sources: time domain, 27	scattering: Born approximation, 259	
	non-scattering potentials, 265, 347	scattering: Born approximation for a sphere 250	
	non-scattering potentials: Born approximation, 266,	scattering: concentric cylinders 230 416	
	209, 340	scattering: from a cylinder 238	
	operator: angular momentum 99	scattering: from a non-nenetrable cylinder 203	
	operator: null space. 197	scattering: from a non-penetrable sphere. 291	
	operator: range, 197	scattering: from a sphere. 236	
	-r	scattering: non-penetrable scatterers. 285. 286	
	phase problem, 225, 278, 335	scattering: penetrable objects, 235	
	phase-unwrapping problem, 363, 368	scattering: physical-optics approximation, 295	
	Picard condition, 197, 211, 410	scattering: simple non-penetrable shapes, 289	
	plane wave: multipole expansion, 103	scattering amplitude, 240	
	plane-wave expansion: generalized, 397	scattering amplitude: EM, 492	
	plane-wave expansions, 92	scattering amplitude: EM fields, 490	
	plane-wave expansions: angle-variable form, 97	scattering amplitude: generalized, 247	

Cambridge University Press 978-0-521-11974-0 - Mathematical Foundations of Imaging, Tomography and Wavefield Inversion Anthony J . Devaney Index More information

More information

518	Index		
	scattering amplitude: limits on resolution, 271	spherical harmonics: vector, 102	
	scattering amplitude: non-penetrable scatterers, 287, 293, 295	Sturm–Liouville problem, 87, 319 surface sources, 179	
	scattering amplitude: PO approximation, 299	surface sources: frequency domain, 81	
	scattering amplitude: theorems, 244	surface sources: non-radiating, 38, 82	
	scattering potential, 333	surface sources: time domain, 36	
	scattering states: plane wave, 390		
	scattering states: stationary, 390	time reversal and back propagation, 80, 176	
	scattering theory, 229, 333	time reversal and conjugate waves, 49	
	scattering theory: Born approximation, 335	time reversal: in a dispersive medium, 49	
	scattering theory: Born series, 255	time-reversal imaging, 434	
	scattering theory: comparison of Born and Rytov	time-reversal imaging: computational, 444	
	approximations, 276	time-reversal imaging: DORT algorithm, 447	
	scattering theory: EM fields, 488	time-reversal imaging: experimental, 435	
	scattering theory: Ewald limiting sphere, 336	time-reversal imaging: filtered DORT, 453	
	scattering theory: Ewald sphere, 336	time-reversal imaging: focusing, 443	
	scattering theory: Foldy-Lax model, 422	time-reversal imaging: multiple frequencies, 453	
	scattering theory: Helmholtz equation, 231	time-reversal imaging: multistatic data matrix, 446	
	scattering theory: hybrid approximation, 278	time-reversal imaging: MUSIC algorithm, 452	
	scattering theory: inhomogeneous background, 413	time-reversal imaging: non-resolved scatterers, 443	
	scattering theory: linearized, 334	time-reversal imaging: SVD, 446	
	scattering theory: Liouville-Neumann expansion, 273	time-reversal imaging: time-reversal matrix, 440, 4	
	scattering theory: plane waves, 256	time-reversal imaging: well-resolved scatterers, 442	
	scattering theory: Ricatti equation for the phase, 272	449	
	scattering theory: Rytov approximation, 271, 274	time-reversal matrix, 440	
	scattering theory: scattering potential, 230	transition operator, 253	
	scattering theory: slant stacking, 280	transition operator: Lippmann–Schwinger equation	
	scattering theory: transition operator, 253	254	
	separation of variables, 87		
	separation of variables: Cartesian coordinates, 89	vector spherical harmonics, 482, 484	
	separation of variables: cylindrical coordinates, 111	1	
	separation of variables: spherical coordinates, 99	wave equation, 11, 12, 36, 37	
	Shepp and Logan head phantom, 379	wave equation: homogeneous, 18, 20	
	singular value decomposition, 194, 203, 325, 406	wave equation: inhomogeneous, 1, 16	
	singular value decomposition: inverse scattering, 351	wave equation: initial-value problem, 91	
	singular value decomposition: normal equations, 195	wave equation: one-dimensional, 10, 15	
	slant stacking, 357	wave equation: reduced, 9, 45	
	Slepian–Pollak theory, 196	wavelet field, 137	
	Sommerfeld radiation condition, 9, 47	Weyl expansion, 118	
	spherical harmonics, 101	Weyl expansion: angle-variable form, 122	
	· · · · · · · · · · · · · · · · · · ·		