
Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1

INTRODUCTION

This chapter is devoted to the presentation of basic definitions and notation to
be used in this monograph. The definitions fall under three general headings;
those related to computable partial functionals and computably enumerable
sets, those related to the computably enumerable degrees, and those related to
trees.

1.1. Computably Enumerable Sets

Let N be the natural numbers, i.e., the set of integers {0, 1, 2, . . . }. We
use interval notation on N; thus [k,m] = {n : k ≤ n ≤ m}. Open interval
notation and half-open interval notation is used in a similar fashion. The
direct sum of two subsets A and B of N is denoted as A⊕ B and is defined as
{2x : x ∈ A} ∪ {2x + 1 : x ∈ B}. |A| will denote the cardinality of the set A.
If A ⊂ N, m ∈ N, and Φ is a partial functional, then we write Φ(A;m) ↓
if m is in the domain of Φ(A), and Φ(A;m) ↑ otherwise. If Φ and Ψ are
partial functionals and A and B are sets, then we write Φ(A) ≃ Ψ(B) if
Φ(A) and Ψ(B) are compatible, i.e., for all x, if Φ(A;x) ↓ and Ψ(B;x) ↓,
then Φ(A;x) = Ψ(B;x); and we write Φ(A) = Ψ(B) if Φ(A) and Ψ(B) are
identical, i.e., Φ(A) and Ψ(B) are compatible and for all x, Φ(A) ↓ iff Ψ(B) ↓.
Intuitively, a computable partial functionalΦ is one forwhich one canwrite a
computer program using an arbitrary oracle A (i.e., which allows instructions
of the form: “If n ∈ A then go to line r”) such that for any m,k ∈ N,
Φ(A;m) = k if and only if the program produces output k when given input
m, and Φ(A;x) ↑ if the program fails to halt on input m. A computably
enumerable set is the domain of a computable partial function Φ(∅), and B is
computably enumerable in A if there is a computable partial functional Φ such
that B is the domain of Φ(A). If Φ is a computable partial functional and
Φ(A;m) ↓ = k, then the computer program provides a computation for the
axiom Φ(A;m) ↓ = k. A is said to be the oracle, m the argument, and k the
value for this axiom (or computation). As the computation halts, only finitely

1

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1. Introduction

many questions of the form “Is n ∈ A?” are asked; the use of the axiom (or
computation) is the largest such n.
If an oracle has the formA⊕B, then we write Φ(A,B) in place of Φ(A⊕B).
In this case, we allow different uses for A and B in an axiom. If only a single
use is specified, then we adopt the convention that this is the common use ofA
and B. A ↾ m+1 is the subset of [0, m] which satisfies (A ↾ m+1)(k) = A(k)
for all k ≤ m. Note that if an axiom has oracle A and usem, then it produces
the same computation as would be produced from oracle A ↾ m + 1; thus we
may allow finite sets of the form A ↾ m + 1 as oracles for axioms.
If Φ is a partial functional with oracle A, then we say that lims Φ(A;x, s) =
m if Φ(A;x, s) ↓ = m for all sufficiently large s . We say that lims Φ(A) is
well-defined if for all x, either there is an m such that lims Φ(A;x, s) = m, or
Φ(A;x, s) ↑ for all sufficiently large s .
It was shown by Kleene [5] that there is an effective enumeration {Φi :
i ∈ N} of all computable partial functionals of a fixed number of integer
variables; and there is a computable one-to-one function mapping sequences
of integers to N. Thus there is no loss of generality in assuming that each
such functional has only one integer argument. (We will, however, use
functionals with multiple oracles and arguments, and note that the above
enumeration uniformly induces effective enumerations of all computable par-
tial functionals with fixed numbers of set and integer variables.) Similarly,
there is a computable enumeration {Wi : i ∈ N} of all computably enu-
merable sets. Furthermore, there is a computable sequence of approxima-
tions to the computable enumeration of functionals or sets, i.e., an array
{W s

i : i, s ∈ N} such that for all i , Wi = ∪{W s
i : s ∈ N}, max(W s

i) = s ,
and {〈m, s〉 : m ∈W s

i } is computable. There is also an array {Φ
s
i : i, s ∈ N}

such that for all i , A and m, Φi(A;m) = lims Φsi (A ↾ s + 1;m); in fact,
if A = Wj , then Φi(Wj ;m) = lims Φsi (W

s
j ;m), and we can assume that

{〈i, j, s, ó〉 : ó ⊂W s
j &Φ

s
i (ó;m) ↓} is computable; without loss of generality,

we assume that if 〈i, j, s, ó〉 is in this set, then i, j ≤ s and ó ⊆ [0, s]. The
notation Φ(A;m)[s] will be used for Φsi (A;m).

1.2. Degrees

Define A ≤T B if there is a computable partial functional Φ such that
Φ(B) = A, and A ≡T B if A ≤T B and B ≤T A. ≡T is an equivalence
relation knownasTuring equivalencewhich captures the notion of information
content. The equivalence classes, {A : A ≡T B} are called degrees, and form
a partially ordered set (poset) with ordering ≤ induced by ≤T . Lower-case
bold-face letters such as a are used to denote degrees. A degree is computably
enumerable if it contains a computably enumerable set. R denotes the poset

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3. Finite Sequences and Trees 3

of computably enumerable degrees, and R denotes the set of computably
enumerable degrees.
The degrees support a join operation: Thus if a is the degree of A and b is
the degree ofB, then a ∪ b denotes the degree ofA⊕B which is the least upper
bound of a and b. Some, but not all pairs of degrees have a meet; when such
a meet exists, it is denoted by a ∩ b. We write a|b if a and b are incomparable.
There is a smallest degree, 0, the degree of the computable sets. The degrees
also support a jump operator denoted by a′; given a set A of degree a, a′ is
the largest degree of a set that is computably enumerable in A. (We remark
that such a set always exists.) Thus 0′ is the largest computably enumerable
degree; we fix a computably enumerable set K of degree 0′.
The high/low hierarchy for the computably enumerable degrees is defined as
follows. A computably enumerable degree a is lown if a(n) = 0(n), and is highn
if a(n) = 0(n+1). Computably enumerable degrees a satisfying

0
(m) < a(m) < 0(m+1)

for all m are called intermediate. A computably enumerable set A is said to
be lown (highn, intermediate, resp.) if its degree is lown (highn intermediate,
resp.).
We recall the Shoenfield Limit Lemma [23]:

Lemma 1.2.1 (Limit Lemma). A ≤T K iff there is a total computable func-
tion f such that for all x, lims f(x, s) = A(x). ⊣

We note that our definition of limit applies to partial functions as well. It is
then easy to verify the following lemma, which we will use as our version of
the Limit Lemma:

Lemma 1.2.2 (Limit Lemma). A ≤T K iff there is a computable partial func-
tion f such that for all x, lims f(x, s) ↓ = A(x).

1.3. Finite Sequences and Trees

Let A be a computable set of symbols, and let T (A) = A<ù , i.e., the set of
all finite sequences of symbols fromA. ∅ will denote the sequence of length 0.
For ó ∈ T (A), let |ó| denote the length of the sequence ó, i.e., the cardinality
of the domain of ó. If there is an n < min{|ó|, |ô|} such that ó(n) 6= ô(n),
then wewrite ó|ô. For ó, ô ∈ T (A), we define ó⌢ô to be the sequence of length
|ó|+ |ô| consisting of the sequence of symbols ó followed by the sequence of
symbols ô.
We define a partial order, ⊆, on T (A) by ó ⊆ ñ if there is a ô such that
ó⌢ô = ñ. 〈T,⊆〉 is a tree if T is an initial segment of T (A) for some A, and
⊆ is the restriction of the ordering on T (A) to T . If ó, ô ∈ T (A), then ó ∧ ô
is the longest ñ ∈ T (A) such that ñ ⊆ ó and ñ ⊆ ô; and if |ó| > 0, then ó−

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1. Introduction

is the unique ñ ⊂ ó such that |ó| = 1 + |ñ|. We also use interval notation for
trees; thus [ó, ô] = {ñ : ó ⊆ ñ ⊆ ô}. Similar notation is used for open and
half-open intervals.
A path through a tree T = T (A) is an ù-sequence of elements of A; [T]
denotes the set of all paths through T . (More generally, trees are defined
as posets having the property that the set of predecessors of any element is
linearly ordered, and a path through a tree is amaximal linearly ordered subset
of the tree.)
Sequences of trees will be specified; the notation used is {T i : i ≤ n}. In
this context, an element of T i will be of the form ó i , i.e., the superscript will
identify the tree of the sequence on which ó i lies. If i = 0, then the superscript
will be omitted.
We will be using paths through one tree to approximate to paths through
another tree through a limit approximation, which is defined as follows. Fix
ô ∈ T ∪ [T] and a function ë from T to another tree T ′. Then î ⊆ lim{ë(ç) :
ç ⊂ ô} iff î ⊂ ë(ç) for a cofinal set of nodes ç ⊆ ô.

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 2

SYSTEMS OF TREES OF STRATEGIES

Many theorems concerning structural properties ofR are provedby construct-
ing sets satisfying each requirement in an infinite list. Frequently, the action
taken to satisfy one requirement will conflict with the preservation of action
taken earlier to satisfy another requirement. The priority method was devised
to organize the action taken to satisfy requirements so that, at the end of a
construction, all requirements are satisfied.
As the logical complexity (measured by the complexity of sentences in a cer-
tain language) of the requirements under consideration increases, it becomes
more difficult to analyze the conflicts between requirements and to show that
all requirements are satisfied. The systems of trees of strategies approach is an
inductive method which provides such an analysis. The proofs that we present
using this approach all follow the same pattern.
We begin with a list of all requirements to be satisfied, and it will usually
be clear that the theorem will follow once we show that all requirements are
satisfied. We will then introduce basic modules for each requirement; these
modules will describe, in a high-level language, the manner in which the
requirement will be satisfied. The basic modules will be finite binary trees
whose edges and non-terminal vertices or nodes are labeled with sentences.
Each non-terminal node will have a directing sentence whose role is to direct
the action taken; if the directing sentence is true, then we will follow the
instructions of the validated action sentence along one edge emanating from
that node, and if the sentence is false, then we will follow the instructions of
the activated action sentence along the other edge emanating from that node.
The basic modules will be templates, and the sentences will be allowed to
use parameters defined in terms of nodes of the basic module, and will be
allowed to restrict quantifiers involving these nodes to lie along the true path
through the tree. There will then be instructions on how to implement the
basic module on the highest-level tree of strategiesT n, and an observation that
the implementation faithfully reflects the basic module and the requirement.
The next step will be the decomposition of requirements, level by level, from
T n to the computable level T 0 at which the construction takes place. Suppose
that we have determined what takes place on T k+1, and wish to pass to T k .

5

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 2. Systems of Trees of Strategies

Each node çk+1 ∈ T k+1 will have potentially infinitely many derivatives on
T k ; these will be nodes working to ensure that the instructions for çk+1 are
carried out. Thus we will need an algorithm that determines the node of T k+1

for which a given node of T k is working, and a definition of the path through
T k+1 computed, through a limit approximation, by a given path through T k .
The trees of strategies will need to be defined carefully in order to reflect this
computation. We will then need to describe how the directing sentence and
action sentences for çk+1 are decomposed to produce the sentences for the
derivative çk ∈ T k of çk+1. This will usually be done by bounding some
quantifiers, and we will again allow nodes of T k to be used as parameters
in the bounding process. We will have to show that this process is a faithful
reflection of the requirement, namely, that if we follow the instructions of
the sentences for the derivatives of çk+1 along a path Λk through T k and Λk

computes the pathΛk+1 throughT k+1 along which çk+1 lies, then we will have
satisfied the instructions of the sentences for çk+1.
When we reach T 0, then we will have instructions for an effective construc-
tion. However, we will need to show that these instructions can be imple-
mented. Thus we cannot have instructions telling us to withhhold a number
x from a computably enumerable set A if x has already been placed into A,
nor can we have instructions to declare an axiom Φs(ó;x) = m when we have
already declared an axiom Φt(ô;x) = k for some t < s , ô ⊆ ó and k 6= m.
Similarly, we cannot have such conflicting instructions at a given stage s . Once
this is shown, we implement the construction and the theorem then follows.
There may be nodes along the true path through T 0 whose instructions we
choose to ignore, but in all such cases, we will show that these instructions are
derived from a node that does not lie on the true path through its tree.
As is evident from the above description, there are many things that need to
be checked or proved for a given theorem. If separate proofs were required for
each theorem, there would be no advantage to this approach, but this is not the
case. Many of the steps to be carried out will be the implementation of one of
several fixed algorithmsused over andover, andwewill have theorems showing
that if an algorithm has certain easily checked properties, then it accomplishes
its task. Thus the proof of each theorem will consist of checking, usually by
inspection, that certain properties hold, and quoting some theorems about
the framework. These theorems will apply to many constructions, and thus
prevent duplication of work in proofs. Thus oncewe have the needed theorems
describing properties of the framework, the hard part in proving a theoremwill
consist of designing basic modules, and sometimes revising fixed algorithms,
so that the necessary properties are satisfied.
In Section 2.1, we present an overview of this chapter, and use the proof of
the Friedberg–Mučnik Theorem to motivate the trees of strategies approach.
Trees of strategies are introduced in Section 2.2. The properties to be obeyed

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1. An Overview 7

by basic modules are presented in Section 2.3. The ë function, defined in
Section 2.4, will provide a computable limit approximation of a path Λk+1

through T k+1 from a path Λk through T k . The links that are defined in
Section 2.5 will be used to keep track of nodes çk+1 ∈ T k+1 that are free
to be switched by ë, i.e., nodes for which it is safe to have ë(çk)|ë((çk)−)
with çk+1 = ë(çk) ∧ ë((çk)−). In Section 2.6, we define the nodes that are
eligible to be antiderivatives of çk , i.e., from which çk is allowed to be derived.
Each construction will have to describe the way the antiderivative of çk is
chosen from among these eligible nodes. Antiderivatives for nodes of T k will
be chosen within blocks of nodes, i.e., segments of T k containing no infinite
paths. Properties of the block formation process are specified in Section 2.7,
and the assignment of requirements to nodes of trees and the decomposition
of requirements will also be discussed in that section. The weight function,
introduced in Section 2.8, will supply bounds for the quantifiers and will
determine arguments for functionals.
Directing sentences and action are discussed in Sections 2.9 and 2.10. The
first of these sections deals primarily with an example, and the second section
with more general properties of these sentences. The Framework Theorem is
presented in Section 2.11. This section does not require a deep understand-
ing of the framework, and can be read without understanding many of the
details of prior sections. We present two simple proofs of lemmas about the
framework in Section 2.12.

2.1. An Overview

This chapter is devoted to the development of the trees of strategies frame-
work. Much of this development is inductive in nature, and terminology may
be encountered that has not yet been defined. One of the purposes of this
section is to give an overview of the development of the framework, and in
particular, to introduce the concepts and terminology used and the intuition
behind the concepts. In order to make the intuition more concrete, we will
interleave a description of the proof of the Friedberg–Mučnik Theoremwithin
the framework. We begin with an introduction to this theorem.
The study of R traces its history back to Post’s [20] fundamental paper
of 1944. Post focused on the computably enumerable sets, sets that can be
enumerated by a computer, and began the study of the information content
of such sets by trying to determine properties of R. There are two special
computably enumerable degrees, 0, the degree of the computable sets which is
the smallest degree in this poset, and 0′, the largest computably enumerable
degree. Post asked whether there were other computably enumerable degrees,
a question that became known as Post’s Problem.

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 2. Systems of Trees of Strategies

Solutions to Post’s Problem were found independently by Friedberg [4] and
Mučnik [19] more than a decade later through the construction of a pair of
computably enumerable sets whose degrees are incomparable. These solutions
introduced a new technique, the priority method, that is the subject of this
monograph. As the proof of this result is one of the simplest applications of
the prioritymethod, it will be used tomotivate the systems of trees of strategies
approach.

Theorem 2.1.1 (Friedberg, Mučnik). There are computably enumerable sets
A and B such that A �T B and B �T A.

Each construction will have an associated level, and a level n construction
will take place on the sequence of trees T 0, . . . , T n . The description of the
construction will begin on T n, and will descend, one level at a time, until
we reach the computable level T 0. The levels go hand-in-hand with the
arithmetical hierarchy, as for all k, an oracle of degree 0(k) will be able to
determine the action of the construction on T k . For each k ≤ n, a portion
of the construction will be assigned to each node çk of T k , and if k > 0, then
çk will divide its assignment among many nodes of T k−1. Furthermore, each
node of T k−1 will receive an assignment from at most one node of T k . If
çk delegates part of its assignment to çk−1 ∈ T k−1, then we will call çk−1

a derivative of çk , and will call çk the antiderivative of çk−1. We will also
introduce notation to track this relationship; we say that up(çk−1) = çk if çk

is the antiderivative of çk−1.
A typical construction will have to satisfy each requirement in a given
sequence of requirements. In a level n construction, each requirement will
have a level, and that level will be ≤ n.

Example 2.1.2. In the proof of the Friedberg–Mučnik Theorem, we will
construct two computably enumerable sets, A and B. The construction will
aim to satisfy the following requirements, for each computable partial func-
tional Φ.

PΦ : Φ(A) 6= B.

QΦ : Φ(B) 6= A.

The manner in which requirements are to be satisfied will be presented
through a labeled finite binary tree called a basic module. A directing sentence
(in prenex normal form) will be assigned to each non-terminal node of the
basic module, and each such node will have a level. If the level of the node
is k, then the directing sentence will be a Σ0k sentence if k is odd, and a Π

0
k

sentence if k is even. Action sentences will be assigned to each of the two
edges emanating from a non-terminal node. Suppose that we are given two
successive nodes, α and â , of a basic module, and that â = α⌢〈ã〉; then we
call ã an outcome of α. If the directing sentence assigned to α is Σ0k (Π

0
k ,

resp.), then we refer to ã as a Σ-outcome (Π-outcome, resp.) and say thatα has

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1. An Overview 9

Σ outcome along â (Π outcome along â , resp.) if â guesses that the directing
sentence is true, and we refer to ã as a Π-outcome (Σ-outcome, resp.) and say
that α has Π outcome along â (Σ outcome along â , resp.) if â guesses that
this directing sentence is false. We also want terminology that keeps track of
the truth values of directing sentences in a level-independent manner. Thus
we refer to ã as a validated outcome (activated outcome, resp.) if â guesses
that the directing sentence assigned to α is true (false, resp.), and say that α
is validated along â (activated along â , resp.). Note that the identification of
the activated vs. validated designation with the Σ vs. Π designation alternates,
level by level. We will later describe how the nodes of the basic module are
identified with nodes of T n.

Example 2.1.3. We describe the basic module for the requirement Φ(A) 6=
B of the Friedberg–Mučnik Theorem. The module will consist of a single
non-terminal node α having level 1, with two terminal successors α0 and α1.
α will have activated and Π outcome along α0, and will have validated and Σ
outcome along α1. The directing sentence will be

∃u∃s(Φ(A ↾ u;x)[s] = 0)

where x will be a parameter determined by the framework from the node of
T 1 to which α is assigned. The activated action sentence will be

∀t(x /∈ B t),

and the validated action sentence will be

∃r∀t ≥ s(x ∈ Br & At ↾ u = As ↾ u).

(In actuality, we will restrict the range of the variable s , but we need not be
concerned with that aspect here.)

While a computable construction is to be carried out along T 0, the action
sentences are Π01 sentences. (In Example 2.1.3 the action sentences presented
are those for T 1; when we pass to T 0, parameters will have been chosen to
replace r, s and u, and the quantifier ∃r will disappear.) These are to be
interpreted as instructions to the construction at later stages. Thus we will
carry out the instructions of the action sentences for all t that are less than
or equal to the weight of nodes ñ0 along the true path through T 0 which
extend the node ç0 ∈ T 0 to which the requirement is assigned. We will not
necessarily implement the action at all such nodes ñ0, but it will suffice for us
to implement action at infinitely many such nodes, as long as it seems that ç0

is a node for which the construction requires action to be carried out.
Let çk−1 ∈ T k−1 be a derivative of çk ∈ T k , and suppose that S is the
directing sentence assigned to çk . For concreteness, we assume that k is odd;
a similar pattern is observed when k is even. We observe from the above
comments that S is a Σ0k sentence. If S is not properly Σ

0
k (i.e., if S is Π

0
k−1

www.cambridge.org/9780521119696
www.cambridge.org

Cambridge University Press
978-0-521-11969-6 — A Framework for Priority Arguments
Manuel Lerman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 2. Systems of Trees of Strategies

or Σ0k−1), then S is also the directing sentence assigned to ç
k−1. Otherwise,

the directing sentence S̃ for çk−1 is obtained by bounding each quantifier

in the block of leading existential quantifiers in S; thus S̃ will be a Π0k−1
sentence. (This is why validated outcomes switch from Σ outcomes on T k to
Π outcomes on T k−1.) The particular bounds are frequently generated by
the weight function wt, a function whose domain consists of the nodes of the
trees of strategies, and which, on each tree, is monotonically increasing with
the length of the node.

Example 2.1.4. We again analyze the sentences used in the proof of the
Friedberg–Mučnik Theorem. Suppose that the directing sentence of Example
2.1.3 is assigned to ç1 ∈ T 1, and let ç0 ∈ T 0 be a derivative of ç1. The
directing sentence for ç0 will have the form

∃u ≤ p∃s ≤ q(Φ(A ↾ u;x)[s] = 0),

where p and q are number parameters generated by the weight function eval-
uated on ç0 and nodes generated from ç0. The activated action sentence for
ç0 will be

∀t ≤ w(x /∈ B t),

and the validated action sentence for ç0 will be

∀t ∈ [s, w](x ∈ Br & At ↾ u = As ↾ u),

where r andw are other parameters generated by the nodes that are currently
being visited. The parameter p is the weight of the longest node on T 1 lying
along the current path through T 1 computed by ç0, the parameter q is the
weight of ç0 itself, the parameter r will be the weight of the successor node to
ç0 on the path determined by the construction, and the parameter w will be
the weight of the current path through T 0. The reason for these choices will
become apparent when we see what is needed to make the proof succeed; for
the time being, it is only important to note the bounding of quantifiers.

For k ∈ (0, n], the correspondence between the outcome of a node çk ∈ T k

along a path Λk ∈ [T k] and the outcomes of its derivatives along a path
Λk−1 ∈ [T k−1] which generates Λk must preserve predicted truth values of
directing sentences. Wemake this concept more precise with the consideration
of the form of directing sentences. Suppose that the directing sentence S for
çk is a Σ0k sentence (a similar analysis can be carried out for Π

0
k sentences).

First suppose thatΛk predicts thatS is true, i.e., thatS is validated alongΛk .
Then Λk predicts that we will find a witness for each quantifier in the leading
block of existential quantifiers of S. This prediction must be borne out along
Λk−1; thus there must be a derivative çk−1 of çk along Λk−1 at which these
witnesses are found. This, in turn, requires the bounds that çk−1 places on
the quantifiers just mentioned to be sufficiently large to bound the witnesses

www.cambridge.org/9780521119696
www.cambridge.org

