Optical metamaterials are an exciting new field in optical science. A rapidly developing class of these metamaterials allow the manipulation of volume and surface electromagnetic waves in desirable ways by suitably structuring the surfaces they interact with. They have applications in a variety of fields, such as materials science, photovoltaic technology, imaging and lensing, beam shaping, and lasing.

Describing techniques and applications, this book is ideal for researchers and professionals working in metamaterials and plasmonics, as well as for those just entering this exciting new field. It surveys different types of structured surfaces, their design and fabrication, their unusual optical properties, recent experimental observations, and their applications. Each chapter is written by an expert in that area, giving the reader an up-to-date overview of the subject. Both the experimental and theoretical aspects of each topic are presented.

Alexei A. Maradudin is a Research Professor in the Department of Physics and Astronomy, at the University of California, Irvine. His research interests have included lattice dynamics of perfect and imperfect crystals; surface excitations on perfect and imperfect elastic, dielectric, and magnetic media; and the scattering of light from elementary excitations in solids.
STRUCTURED SURFACES AS OPTICAL METAMATERIALS

Edited by

ALEXEI A. MARADUDIN
University of California, Irvine
Contents

List of contributors xiii
Preface xvii

1 Physics of extraordinary transmission through subwavelength hole arrays 1

EVGENY POPOV AND NICOLAS BONO
DA 1.1 A brief reminder of the history of grating anomalies and plasmon surface waves 1
1.2 Generalities of the surface waves on a single interface 2
1.3 Extraordinary transmission and its first explanations 5
1.4 The role of the evanescent mode 10
1.5 Enhanced Fabry–Perot resonances through evanescent modes 16
1.6 What resonance predominates? 16
1.7 Nonplasmonic contributions 20
1.8 Conclusions 24
References 25

2 Resonant optical properties of nanoporous metal surfaces 28

TATIANA V. TEPERIK 2.1 Introduction 28
2.2 Resonant optical properties of metal surfaces with spherical pores 30
2.3 Self-consistent electromagnetic model: scattering-matrix layer-KKR approach 33
2.4 Optical spectra of nanoporous metal surfaces 36
2.5 Total light absorption in nanostructured metal surfaces 43
2.5.1 Equivalent resonant RLC circuit model 44
2.5.2 General conditions for total light absorption 48
Contents

2.5.3 Omnidirectional absorption by a nanoporous metal surface 50
Acknowledgments 54
References 54

3 Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles 58
ANDREA ALÚ AND NADER ENGHETA
3.1 Introduction 58
3.2 Plane wave excitation of two-dimensional arrays of nanoparticles: theoretical analysis 59
3.2.1 TE excitation 61
3.2.2 TM excitation 69
3.3 Numerical results and design principles 75
3.3.1 TE polarization: lossless nanoparticles 75
3.3.2 TE polarization: realistic levels of absorption 84
3.3.3 TM polarization: realistic levels of absorption 87
3.4 Conclusions 91
Acknowledgments 91
References 91

4 Chirality and anisotropy of planar metamaterials 94
ERIC PLUM AND NIKOLAY I. ZHELUDEV
4.1 Introduction 94
4.2 General planar metamaterials 95
4.2.1 Lossless complementary planar metamaterials 101
4.2.2 Two-dimensional (2D) achiral planar metamaterials 101
4.2.3 Normal incidence onto achiral planar metamaterials 103
4.2.4 Two-fold rotational symmetry or normal incidence 104
4.3 Definitions 105
4.3.1 Alternative variables for the elements of scattering and transmission matrices 105
4.3.2 Polarization states 106
4.4 Polarization effects 107
4.4.1 Optical activity at oblique incidence ($a \neq d$) 107
4.4.2 Circular conversion dichroism ($|b| \neq |c|$) 112
4.4.3 Linear conversion dichroism 116
4.4.4 Linear birefringence and linear dichroism 118
4.5 Eigenstates 120
4.5.1 Eigenstates for pure optical activity ($b = c = 0$) 123
4.5.2 Eigenstates in the absence of optical activity ($a = d$) 123
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Energy conservation</td>
<td>127</td>
</tr>
<tr>
<td>4.6.1 Lossless planar metamaterials</td>
<td>129</td>
</tr>
<tr>
<td>4.6.2 Lossless planar metamaterials without linear birefringence/dichroism ((L = 0, b = c = 0))</td>
<td>133</td>
</tr>
<tr>
<td>4.7 Applications and limitations</td>
<td>135</td>
</tr>
<tr>
<td>4.7.1 Attenuators, beam splitters, mirrors, and empty space</td>
<td>135</td>
</tr>
<tr>
<td>4.7.2 Linear polarizer</td>
<td>136</td>
</tr>
<tr>
<td>4.7.3 Wave plates</td>
<td>138</td>
</tr>
<tr>
<td>4.7.4 Polarization rotators</td>
<td>141</td>
</tr>
<tr>
<td>4.7.5 Circular polarizers</td>
<td>146</td>
</tr>
<tr>
<td>4.8 Normal incidence</td>
<td>147</td>
</tr>
<tr>
<td>4.8.1 Achiral planar metamaterials at normal incidence</td>
<td>148</td>
</tr>
<tr>
<td>4.8.2 Isotropic planar metamaterials at normal incidence</td>
<td>151</td>
</tr>
<tr>
<td>4.8.3 Lossless planar metamaterials: normal incidence or two-fold rotational symmetry</td>
<td>151</td>
</tr>
<tr>
<td>4.9 Summary</td>
<td>153</td>
</tr>
<tr>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>5 Novel optical devices using negative refraction of light by periodically corrugated surfaces</td>
<td>158</td>
</tr>
<tr>
<td>WENTAO TRENT LU AND SRINIVAS SRIDHAR</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>158</td>
</tr>
<tr>
<td>5.2 Negative refraction with visible light and microwaves by selective diffraction</td>
<td>159</td>
</tr>
<tr>
<td>5.3 Focusing microwaves by a plano-concave grating lens</td>
<td>163</td>
</tr>
<tr>
<td>5.4 Realization of a plano-concave grating lens in optics</td>
<td>165</td>
</tr>
<tr>
<td>5.5 AANR and a negative lateral shift through a multilayered structure with surface gratings</td>
<td>169</td>
</tr>
<tr>
<td>5.6 Surface corrugation approach to AANR in 2D photonic crystals</td>
<td>171</td>
</tr>
<tr>
<td>5.7 Flat lens imaging with large (\sigma)</td>
<td>176</td>
</tr>
<tr>
<td>5.8 Discussions and conclusions</td>
<td>179</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>180</td>
</tr>
<tr>
<td>References</td>
<td>181</td>
</tr>
<tr>
<td>6 Transformation of optical fields by structured surfaces</td>
<td>185</td>
</tr>
<tr>
<td>A. A. MARADUDIN, E. R. MÉNDEZ, AND T. A. LESKOVA</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>6.2 Beam shaping</td>
<td>188</td>
</tr>
<tr>
<td>6.2.1 The transmitted field</td>
<td>188</td>
</tr>
<tr>
<td>6.2.2 The inverse problem</td>
<td>193</td>
</tr>
</tbody>
</table>
Contents

6.2.3 Beam shaping 197
6.2.4 Example 198
6.2.5 Fabrication of surfaces formed from triangular facets 199
6.2.6 Replacement of ensemble averaging by frequency averaging 204
6.3 Pseudo-nondiffracting beams 209
6.3.1 The transmitted field 209
6.3.2 The inverse problem 212
6.3.3 Three-dimensional distribution of the mean intensity in the radial direction from the optical axis 215
6.3.4 Pseudo-nondiffracting beam 217
6.3.5 Fabrication of circularly symmetric radially random surfaces 219
6.3.6 Replacement of ensemble averaging by frequency averaging 222
6.4 Discussion and conclusions 224
Acknowledgments 225
Appendix 225
References 226

7 Surface electromagnetic waves on structured perfectly conducting surfaces 232
A. I. FERNÁNDEZ-DOMÍNGUEZ, F. GARCÍA-VIDAL, AND L. MARTÍN-MORENO
7.1 Introduction 232
7.2 Theoretical formalism: coupled mode method 234
7.3 Planar geometries 240
7.3.1 Textured surfaces 240
7.3.2 Perforated slabs 243
7.4 Cylindrical geometries 247
7.5 Terahertz waveguides based on spoof SPPs 251
7.5.1 Milled wires 251
7.5.2 Helically grooved wires 253
7.5.3 Corrugated channels 257
7.5.4 Corrugated wedges 259
7.5.5 Domino structures 262
7.6 Conclusions 264
References 265
Contents

8 Negative refraction using plasmonic structures that are atomically flat 269
 Peter B. Catrysse, Hocheol Shin, and Shanhui Fan
 8.1 Introduction 269
 8.2 Physics 270
 8.3 All-angle negative refraction for surface plasmon waves 273
 8.4 All-angle negative refraction and evanescent wave amplification 278
 8.5 Related work 282
 References 284

9 Anomalous transmission in waveguides with correlated disorder in surface profiles 287
 F. M. Izrailev and N. M. Makarov
 9.1 Introduction 287
 9.2 Surface-corrugated waveguide 289
 9.3 Single-mode structure 292
 9.4 Design of a random surface profile with predefined correlations: convolution method 296
 9.5 Gaussian correlations 297
 9.6 Two complementary examples of selective transparency 299
 9.6.1 Example 1 299
 9.6.2 Example 2 300
 9.7 Random narrow-band reflector 302
 9.8 Multi-mode waveguide 304
 Acknowledgments 310
 References 310

10 Cloaking 316
 Christopher C. Davis and Igor I. Smolyaninov
 10.1 Introduction, general background, and history 316
 10.2 The difference between “cloaking,” “blackness,” and “camouflage” 318
 10.2.1 Impedance matching 319
 10.2.2 Highly absorbing and nonreflective surfaces 320
 10.2.3 Camouflage 321
 10.3 Transformational optics and optical metamaterials 322
 10.4 Dielectric constants, relative permeabilities, and refractive indices 322
 10.5 Negative refractive index materials 324
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>Generalized transmission lines and backward wave systems</td>
<td>325</td>
</tr>
<tr>
<td>10.7</td>
<td>Transformation optics and the ray optics of cloaks</td>
<td>328</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Spherical cloak</td>
<td>333</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Cylindrical cloak</td>
<td>336</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Homogeneous isotropic cloak</td>
<td>337</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Cloaks of arbitrary shape</td>
<td>337</td>
</tr>
<tr>
<td>10.7.5</td>
<td>Cloak boundary conditions</td>
<td>338</td>
</tr>
<tr>
<td>10.7.6</td>
<td>Ray dynamics in cloaks</td>
<td>339</td>
</tr>
<tr>
<td>10.7.7</td>
<td>The Hamiltonian optics of rays</td>
<td>340</td>
</tr>
<tr>
<td>10.7.8</td>
<td>Ray and wave paths in inhomogeneous and anisotropic materials</td>
<td>343</td>
</tr>
<tr>
<td>10.7.9</td>
<td>Nonmagnetic cloak for visible light</td>
<td>345</td>
</tr>
<tr>
<td>10.8</td>
<td>Conformal mapping for cloaking</td>
<td>348</td>
</tr>
<tr>
<td>10.9</td>
<td>Ray dynamics entering a dielectric cloak</td>
<td>356</td>
</tr>
<tr>
<td>10.10</td>
<td>Practical cloaking experiments</td>
<td>356</td>
</tr>
<tr>
<td>10.10.1</td>
<td>Microwave cloak</td>
<td>356</td>
</tr>
<tr>
<td>10.10.2</td>
<td>Visible light cloak</td>
<td>359</td>
</tr>
<tr>
<td>10.11</td>
<td>“Cloaking” by scattering compensation (plasmonic cloaks)</td>
<td>364</td>
</tr>
<tr>
<td>10.12</td>
<td>Carpet cloaks</td>
<td>366</td>
</tr>
<tr>
<td>10.13</td>
<td>Metamaterial emulation using tapered waveguides</td>
<td>368</td>
</tr>
<tr>
<td>10.14</td>
<td>Trapped rainbow</td>
<td>376</td>
</tr>
<tr>
<td>10.15</td>
<td>The limitations of real cloaks</td>
<td>378</td>
</tr>
<tr>
<td>10.16</td>
<td>Prospects for the future</td>
<td>380</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>381</td>
<td></td>
</tr>
</tbody>
</table>

11 Linear and nonlinear phenomena with resonating surface polariton waves and their applications 386

Haim Grebel

11.1 Introduction 386

11.2 Two-dimensional surface polariton modes (a straightforward analysis) 389

11.2.1 Homogeneous waveguides and interfaces 389

11.2.2 Goos–Hänchen shift in optical waveguides (ray optics approach) 394

11.2.3 Surface modes 395

11.2.4 Periodically patterned interfaces 398

11.2.5 Suspended periodic metallic structures 400

11.2.6 Energy considerations, dispersion, and loss 402

11.3 Raman spectroscopy with metamaterials 406
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.1 Fields and resonance effects (colloids and structured surfaces)</td>
<td>406</td>
</tr>
<tr>
<td>11.3.2 Examples (sensors, etc.)</td>
<td>411</td>
</tr>
<tr>
<td>11.4 Gain and feedback with structured metallo-dielectric surfaces</td>
<td>412</td>
</tr>
<tr>
<td>11.4.1 From local to extended feedback mechanisms</td>
<td>413</td>
</tr>
<tr>
<td>11.4.2 Electric field distribution</td>
<td>418</td>
</tr>
<tr>
<td>11.4.3 Examples (enhanced fluorescence and SP lasers)</td>
<td>419</td>
</tr>
<tr>
<td>11.5 Concluding remarks</td>
<td>422</td>
</tr>
<tr>
<td>References</td>
<td>423</td>
</tr>
<tr>
<td>Index</td>
<td>427</td>
</tr>
</tbody>
</table>
Contributors

Alú, Andrea
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Bonod, Nicolas
Institut Fresnel, Aix-Marseille Université, CNRS, Unité Mixte de Recherche 6133, Domaine Universitaire de Saint Jerome, 13397 Marseille Cedex 20, France.

Catrysse, Peter B.
E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

Davis, Christopher C.
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA.

Engheta, Nader
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Fan, Shanhui
E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

Fernández-Domínguez, A. I.
Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid, Spain.
List of contributors

García-Vidal, F.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

Grebel, Haim
Electronic Imaging Center, and the ECE Department at the New Jersey Institute of Technology, Newark, NJ 07102, USA.

Izrailev, F. M.
Instituto de Física, Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla 72570, México.

Leskova, T. A.
Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, CA 92697 USA.

Lu, Wentao Trent
Department of Physics and Electronic Materials Research Institute, Northeastern University, Boston, MA 02115, USA.

Maradudin, A. A.
Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, CA 92697 USA.

Makarov, N. M.
Instituto de Ciencias, Universidad Autónoma de Puebla, Priv. 17 Norte No. 3417, Col. San Miguel Hueytulipan, Puebla 72050, México.

Martín- Moreno, L.
Departamento de Física de la Materia Condensada, ICMA-CSIC, Universidad de Zaragoza, E-500009 Zaragoza, Spain.

Méndez, E. R.
División de Física Aplicada, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada, B. C., 22860, México.

Plum, Eric
Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
List of contributors

Popov, Evgeny
Institut Fresnel, Aix-Marseille Université, CNRS, Unité Mixte de Recherche 6133, Domaine Universitaire de Saint Jerome, 13397 Marseille Cedex 20, France.

Shin, Hocheol
E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, and Intel Corporation, Santa Clara, CA 95054, USA.

Smolyaninov, Igor I.
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA.

Sridhar, Srinivas
Department of Physics and Electronic Materials Research Institute, Northeastern University, Boston, MA 02115, USA.

Teperik, Tatiana V.
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain.

Zheludev, Nikolay I.
Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
Preface

If a metamaterial can be defined as a deliberately structured material that possesses physical properties that are not possible in naturally occurring materials, then deliberately structured surfaces that possess desirable optical properties that planar surfaces do not possess can surely be considered to be optical metamaterials. The surface structures displaying these properties can be periodic, deterministic but not periodic, or random.

In recent years interest has arisen in optical science in the study of such surfaces and the optical phenomena to which they give rise. A wide variety of these phenomena have been predicted theoretically and observed experimentally. They can be divided roughly into those in which volume electromagnetic waves participate and those in which surface electromagnetic waves participate. Both types of optical phenomena and the surface structures that produce them are described in this volume.

The first several chapters are devoted to optical interactions of volume electromagnetic waves with structured surfaces. One of the earliest examples of a structured surface that acts as an optical metamaterial, and the one that today is perhaps the best known and most widely studied, is a metal film pierced by a two-dimensional periodic array of holes with subwavelength diameters. It was shown experimentally by Ebbesen et al. [1] that the transmission of p-polarized light through this structure can be extraordinarily high at the wavelengths of the surface plasmon polaritons supported by the film. “Extraordinarily high” in this context refers to the observation that more than twice as much light is transmitted as impinges on the holes. This paper stimulated a great deal of theoretical and experimental work directed at elucidating the mechanism(s) responsible for the extraordinarily high transmissivity, and at enhancing it even more. In the first chapter, E. Popov and N. Bonod describe the theoretical and experimental studies of this phenomenon, whose explanation at times has been the subject of some controversy.
Not all optical enhancement effects occur in transmission through structured surfaces. In Chapter 2, T. V. Teperik discusses recent theoretical and experimental work on the diffraction of light from a two-dimensional periodic lattice of sub-micron voids (nanopores) situated beneath the surface of a metal in contact with vacuum. This kind of structure supports both dispersive surface plasmon polaritons at the vacuum–metal interface, and nondispersive void plasmons associated with each void. One of the interesting and important consequences of the existence of the latter type of excitation is the possibility of achieving omnidirectional total absorption of p- and s-polarized light of a specified wavelength incident on the structure when the voids are filled with a dielectric medium. Moreover, as a consequence of Kirchhoff’s law, such a structured surface can also exhibit omnidirectional black-body emission at a resonant frequency that can be varied by varying the radius of the dielectric-filled voids. Other interesting optical properties of nanoporous metal surfaces are also discussed in this chapter.

The reflection of an optical plane wave from, and its transmission through, yet another type of two-dimensional periodic planar structure is discussed by A. Alú and N. Engheta in Chapter 3. The structure considered is a dense planar array of nanoparticles, primarily metallic nanospheres whose diameter and periods are smaller than the wavelength of the illuminating electromagnetic field, that are treated in the dipolar approximation. The reflection and transmission spectra display features arising from the plasmonic resonances of the individual nanoparticles, and from the two-dimensional periodicity of the structure as a whole. It is shown that structures of this type offer the possibility of basing highly reflective and/or frequency-selective surfaces at optical frequencies on them, which can be used for filtering, absorption, and radiation purposes.

A planar metamaterial is a planar two-dimensional surface of zero thickness that is periodically structured on the sub-wavelength scale. In practice such a material is represented by a single periodically patterned metal or dielectric layer that is very thin compared to the wavelength of the light incident on it, and is often supported by a transparent substrate. In a comprehensive review in Chapter 4, E. Plum and N. Zheludev analyze polarization and propagation properties of these metamaterials on the basis of such general principles as symmetry, Lorentz reciprocity, and energy conservation. They show that suitably structured planar metamaterials can display circular birefringence and circular dichroism, linear birefringence and linear dichroism, as well as asymmetric transmission of circularly polarized light incident on them from opposite directions.

The ability to control the propagation of light is important for a variety of applications. In recent years a great interest has arisen in the negative refraction of light as it passes through the interface between two media. This interest is due to the fundamental importance of this effect, as well as to possible applications
of it. For example, a perfect lens can be created on the basis of a medium that produces negative refraction, and sub-wavelength imaging can also be achieved by the use of such a medium. Negative refraction has been achieved in two types of materials. The first type is a metamaterial that possesses simultaneously a negative dielectric permittivity and a negative magnetic permeability within some frequency range [2]. Such a medium has a negative-index of refraction, and hence is often referred to as a negative-index material. The first material with these properties was fabricated by embedding arrays of split-ring resonators in a lattice of metal wires [3]. The second type of material is a nonmagnetic metamaterial with a positive dielectric permittivity. Such a material has a positive index of refraction, and is often referred to as a positive-index material. Photonic crystals formed from dielectric components can serve as positive-index materials that display negative refraction. One of the mechanisms responsible for negative refraction in such media is the presence in their photonic band structure of a surface of constant frequency with a negative group velocity in some frequency range [4]. In this case the Poynting vector of a wave packet is directed opposite to its wave vector, which leads to negative refraction [5]. The negative group velocity of circularly polarized electromagnetic waves of one handedness propagating in a gyrotropic medium also leads to negative refraction in certain frequency ranges [6].

The types of metamaterials just described are bulk materials. However, negative refraction of volume electromagnetic waves can also be achieved by the use of suitably structured surfaces. In a recent study, Lu et al. [7] showed that negative refraction can be achieved when light is incident from a dielectric medium with a real positive refractive index \(n > 1 \) on a periodically corrugated interface with air, at an angle of incidence \(\theta_0 \) that is greater than the critical angle for total internal reflection, \(\theta_0 > \theta_c = \sin^{-1}(1/n) \). In this situation the zeroth and all positive orders of the light refracted into the air are suppressed, and by a suitable choice of the period of the corrugation of the interface only the \((-1)\)-order refracted beam is nonzero. This mechanism for negative refraction has been confirmed experimentally. These authors also show that by introducing the periodic surface not on a homogeneous semi-infinite dielectric medium but on a planar multilayered medium, the restriction \(\theta_0 > \theta_c \) can be lifted. This prediction has also been verified experimentally. W. T. Lu and S. Sridhar review this work in Chapter 5, and present descriptions of several optical devices based on this approach to negative refraction.

A more general type of refraction is described by A. A. Maradudin et al. in Chapter 6, where it is shown how to design and fabricate a two-dimensional randomly rough surface that transforms a beam with a specified transverse intensity distribution into a beam with a different specified intensity distribution on its transmission through that surface. Such beam shaping is used in a variety of applications from laser surgery to optical scanning. In this chapter it is also shown
how to design and fabricate a circularly symmetric but radially random surface that transforms a plane wave incident on it into a transmitted beam that does not spread over a finite distance along the symmetry axis of the structure from the surface – a pseudo-nondiffracting beam. Such beams can be used in precision alignment and in laser machining, for example.

The preceding examples of structured surfaces that act as optical metamaterials have all consisted of surfaces that are illuminated by volume electromagnetic waves. However, the propagation of surface electromagnetic waves, and even their existence, can be modified in specified desirable ways by structuring in suitable ways the surfaces on which they propagate. Similarly, novel applications of these waves can be realized by a suitable structuring of the surfaces supporting them.

For example, it has been known for some time that the planar surface of a semi-infinite perfect conductor does not support a surface electromagnetic wave. However, if a perfectly conducting surface is periodically corrugated, as in a classical grating, or is doubly periodically corrugated, as in a bigrating, it can support a surface electromagnetic wave. These theoretical predictions have recently been confirmed experimentally. The interesting properties of these surface waves, which owe their existence to the structuring of the surfaces on which they propagate, are described by A. I. Fernández-Domínguez et al. in Chapter 7.

As we have noted above, the negative refraction of volume electromagnetic waves has been studied theoretically and experimentally by many investigators, and several mechanisms for accomplishing such refraction have been explored, including the use of a periodically corrugated dielectric surface [7]. Recently, attention has been directed at the negative refraction of surface plasmon polaritons. Shin and Fan [8] proposed a metal–dielectric–metal structure that produces all-angle negative refraction of a surface plasmon polariton incident on it. The negative refraction they predicted is not due to the structure producing it possessing simultaneously a negative dielectric permittivity and a negative magnetic permeability in some frequency range. Instead it arises because each structure supports a surface plasmon polariton whose dispersion curve possesses a branch with an isotropic negative group velocity. It has been known for some time that the existence in a medium of an elementary excitation that possesses a negative group velocity within some frequency range is a sufficient condition for that medium to display in that frequency range the negative refraction of light incident on it with a frequency in that range [4, 5]. The theoretical and experimental aspects of the negative refraction of a surface plasmon polariton are presented in Chapter 8 by P. B. Catrysse et al.

There exists a commonly held belief that any randomness in a long one-dimensional conductor leads to an exponentially small transmission due to the Anderson localization of all of its eigenstates. However, the actual situation is
subtler than this. It has been shown [9] that specific long-range correlations in a
scattering potential give rise to perfect electron wave transmission within any given
energy/frequency window. This result, which is known as selective transparency,
was confirmed in experiments on a single-mode waveguide possessing this type
of disorder. The experimental results clearly showed the mobility edges that sepa-
rate regions of perfect transparency from those with localized transport. As F. M.
Izrailev and N. M. Makarov point out in Chapter 9, these results suggested to them
that similar results should be observed in single-mode or multimode planar waveg-
uides with one of their surfaces randomly rough, when the rough surface profile
function has long-range correlations of a specific type. These authors present results
confirming their expectation for both single-mode and multimode waveguides.

A recently introduced class of metamaterials is one consisting of materials
designed in such a way that an object embedded in one of them is cloaked from
observation by electromagnetic waves propagating through the material. Perhaps
the most commonly employed approach to the design of such cloaks is trans-
formation optics [10, 11]. It predicts materials with dielectric permittivities and
magnetic permeabilities that possess coordinate dependencies that deform the path
of electromagnetic waves propagating in them to avoid spatial regions occupied
by the objects to be cloaked. This approach to the cloaking of two- and three-
dimensional objects, and other approaches that have been proposed, are reviewed
by C. C. Davis and I. I. Smolyaninov in Chapter 10. They then show how the
approach to the cloaking of two-dimensional objects in metamaterials designed by
transformation optics can be extended to the design of surface structures that cloak
surface defects from detection by surface plasmon polaritons, and produce the
“trapped rainbow” effect for guided waves, in which a suitably designed plasmonic
waveguide slows down and stops light of different wavelengths at different spatial
points along the waveguide. Experimental results demonstrating both effects are
presented.

In a planar waveguide consisting of a thin oxide layer sandwiched between
an air superstrate and a metallic substrate the electric field intensity of the surface
electromagnetic wave guided by this structure becomes a maximum at the interface
between air and the oxide layer as the waveguide thickness is made extremely thin
but finite. If the oxide layer is patterned with a periodic structure, e.g. by an array
of holes, a standing electromagnetic surface wave can be formed. Such a standing
wave enhances the interaction between a molecule placed on the air–oxide interface
and the electromagnetic field of the surface wave. This enhanced interaction can be
useful in surface-enhanced Raman spectroscopy, in the detection of molecules on
a surface, and as a source for coherent radiation (lasers). These applications, and
the physics underlying them, are described by H. Grebel in Chapter 11.
Preface

The chapters constituting this book present an up-to-date survey of many aspects of optical effects produced by structured surfaces. Yet, the topics covered in it do not exhaust the optical phenomena to which suitably structured surfaces can give rise. Indeed, they are limited only by our imagination. Nevertheless they provide a good indication of the variety of these phenomena, and the kinds of surfaces required for their realization, and help to indicate why this emerging field in optical science will continue to generate more research activity and applications in the future.

The editorial staff at the Cambridge University Press have my thanks for their help in producing this book. Special thanks are due to Ms. Irene Pizzie for her excellent copyediting of each manuscript.

I owe an enormous debt of gratitude to my colleague Dr. Tamara A. Leskova for the many hours spent in ensuring the correct formatting of the chapters, in helping to prepare the subject index, and in checking and correcting the references.

Finally, I wish to express my appreciation to the authors for the thought and care they put into preparing their contributions.

Irvine, California

Alexei A. Maradudin

References