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1 Problem formulation
From reality to realistic computer
representation

In this chapter we will learn about problem formulation, which is the first step
in developing a mathematical model of a physical (such as a biomedical) pro-
cess, as illustrated in Figure 1.1. In problem formulation, we take reality, make
assumptions thereby simplifying it, and apply universal physical laws to generate
the equations (the model) which describe the real physical process. It is critical to
see that everything we will learn from our model depends on how we have formu-
lated the problem. This chapter provides the big picture of problem formulation,
with additional details available in theory chapters (7–9). As shown in Figure 1.1,
problem formulation in this chapter will be followed by subsequent chapters on
the solution process.

This chapter 
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Figure 1.1

Problem formulation as the first step in modeling.

1.1 Context: biomedical transport processes

Transport processes, that is fluid flow, heat transfer and mass transfer, often underlie
a biomedical process, perhaps the most common examples being drug delivery and
thermal therapy. The relevance of heat and mass transfer to biomedical processes
is now introduced.
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4 Problem formulation

1.1.1 Heat transfer and thermal therapy

Heat transfer refers to movement of thermal energy due to conduction, convec-
tion or radiation. Thermal therapy is any treatment or technique that elevates or
decreases cell/tissue temperature for some length of time with an ultimate thera-
peutic goal. Thermal therapy can include hyperthermia, tissue coagulation and
ablation as well as ultrasonic, laser, radiofrequency and microwave heating to
destroy tissue, plus cryosurgery, burn therapy, bone growth stimulation, wound
healing and thermally mediated gene therapy. Clinical applications include deep
heating for various musculoskeletal diseases (rheumatoid arthritis, osteoarthritis,
fibrositis and myositis), deep heating for many neuromuscular disorders (muscular
dystrophy, progressive muscular atrophy), treatment of various eye disorders (iritis,
postoperative uveitis), dental problems (swelling and trismus following extrac-
tions, toothache), elevating body temperature following hypothermia surgery and
cancer therapy using hyperthermia (40–50 ◦C). Thus, modeling of thermal therapy
would require modeling of heat transfer.

1.1.2 Mass transfer and drug delivery

Mass transfer refers to movement of a material due to diffusion and convection.
Drug delivery can be described as the process of delivering a drug to the site
of action. Drug transport, i.e., drug diffusion or flow, is intimately related to drug
delivery. Even traditional drug delivery processes, such as oral intake, require mass
transfer questions to be answered. For example, how do we design a tablet that
releases the active drug material at a rate that is nearly constant? Newer methods
of drug delivery, such as through skin as in the case of a patch placed over the
skin, often require somewhat greater understanding of mass transfer through skin
and other materials. In a critical process such as drug delivery in the brain, a mass
transfer model that includes diffusion and elimination of drug can provide valuable
insight into the complex process. Thus, modeling of drug delivery processes would
require modeling of mass transfer.

1.1.3 Quantification of goals in a biomedical process

The goals of a thermal therapy or a drug delivery process need to be stated quan-
titatively. Examples of quantitative measures of several biomedical processes are
shown in Table 1.1.
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5 1.2 What is problem formulation?

Table 1.1 Examples of quantitative measures of success in various biomedical
processes.

Process Design goal in quantitative terms

Radiofrequency heating of tumorous
tissue

Reach temperatures in the tumorous tissue
in the region of 43–45 ◦C.

Laser ablation Reach temperatures in the region to be
ablated above 300 ◦C.

Cancer therapy Cumulative number of equivalent minutes
of heating at 43 ◦C, defined by Eqn. 8.39,
needs to reach a certain value.

Cryosurgery Tissue to be destroyed needs to reach
below −45 ◦C.

Drug delivery (design of a coated
tablet, design of a patch)

Rate of drug release over time has to meet
certain criteria such as a mini-
mum dose; rate needs to stay near
constant over time; release needs to be
over a certain time period.

Drug delivery (placement in tissue, as
in a brain tumor)

Penetration distance into the tissue (area of
coverage) has to meet certain criteria.
Additional criteria can be from those listed
under tablet and patch.

1.2 What is problem formulation?

Problem formulation is creating an equivalent mathematical formulation of a physi-
cal problem, i.e., coming up with equations which describe the physical process
or processes that constitute the problem (and therefore virtually replace such a
process or processes). It is the first step in modeling. Consider, for example, the
whitening strip in Figure 1.2 which is placed over teeth to remove unwanted stains.
Hydrogen peroxide from the strip diffuses into the teeth and reacts with the stain
(an organic material), thus removing the stain and whitening the teeth. We would
like to know the rate of diffusion of the hydrogen peroxide into the teeth over time
which will provide the time needed to whiten them. This is the problem in the
physical world, as shown on the left side of the figure. In order to simulate this
physical problem on the computer, we need to describe the physical process in
terms of mathematical equations (i.e., develop a problem formulation).

The right side of Figure 1.2 shows the mathematical equivalent, or analog, that is
achieved after many simplifications of the real process. The mathematical analog
consists of a geometry (computational domain), governing equation, boundary
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6 Problem formulation
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Figure 1.2

Illustration of problem formulation where a real process (whitening of teeth) is transformed into its computational model
consisting of a goal, a computational domain, governing equation, boundary conditions, initial condition and material
properties. Properties data taken from Bermudez et al. (2004).
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7 1.3 Steps in problem formulation

conditions, material properties and other parameters that define the real process.
The computational domain is the region over which computations will be per-
formed. The governing equation represents the conservation of mass species, H2O2

in this case. Boundary conditions are the conditions imposed by the surroundings
on the computational domain. In this figure, the first condition, ∂c/∂x = 0 at
x = 0, implies that H2O2 cannot escape into the air, while the second condition,
c(x = L) = 0, means that H2O2 cannot penetrate very far into the teeth and there-
fore, at a far away place given by x = l, the concentration stays at c = 0. This
mathematical analog can now be used in a computer to simulate the problem in the
physical world. For the purpose of understanding and optimizing of the physical
process, the mathematical analog can now be a substitute.

Where does this mathematical analog come from? A mathematical analog uses
the fundamental laws of the physical world in a mathematical form. The fundamen-
tal physical laws that are used in the problems of interest to us are: (1) conservation
of total mass (continuity equation); (2) conservation of a mass species (mass
transfer equation); (3) conservation of momentum (fluid flow or Navier–Stokes
equations); and (4) conservation of thermal energy (heat transfer equation). These
are called the governing equations – they are presented in Section 1.7 and are
derived in Chapter 7.

1.3 Steps in problem formulation

Problem formulation is perhaps the most critical activity in modeling a process. On
the one hand, this step can be made overly complex by retaining a lot of unnecessary
details in the model that will increase the computational complexities greatly. On
the other hand, if simplification is not done carefully, the main physics of the
process can be lost, leading to a worthless model for the purpose of simulating
the physical process of interest. For these reasons, all of the steps in problem
formulation require simplification, based on understanding of the process in terms
of the fundamental physics, such as fluid flow, heat transfer or mass transfer.
Problem formulation is also critical because the results we will obtain simply
reflect how the model has been set up.

Depending on how we proceed in problem formulation, we can end up with
different sets of governing equations and boundary conditions to solve. Analyti-
cal solutions to these equations, of the kind found in first courses in transport
processes, are possible only for simpler forms of these equations which force a
more drastic simplification of the physics. As numerical solutions, the kind that
will be used in this book are considerably more flexible than analytical solutions,
many more details of the physical process can be included, making the formulated
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8 Problem formulation

Geometry
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Figure 1.3

Steps in problem formulation. Each of the steps requires some
simplification, as discussed throughout this chapter. For an example,
see Figure 1.2.

mathematical problem considerably more realistic, i.e., closer to the actual physical
situation. As we go through the various steps of problem formulation, we can
always consider more realistic alternatives.

An example of problem formulation is shown in Figure 1.2. The process of
arriving at the mathematical formulation can be divided into several steps, as shown
in Figure 1.3. We first decide on the eventual goal of the simulation – this sets the
stage for approaching the steps that follow. Next, we decide on the geometry or the
region over which simulation will take place. This is followed by the choice of the
governing equations and boundary conditions that will describe the process. To
actually solve these equations for specific cases, we need the material properties
and parameters corresponding to the situation.

Guidelines on performing the primary steps of problem formulation (geo-
metry, governing equations, boundary conditions and properties) are provided
in this chapter, Chapters 7–9 on theory and various software implementations in
Chapters 2, 3 and 6. This interrelationship between chapters is illustrated in
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9 1.4 Defining goals for problem formulation
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Relationship between the components of problem formulation and their software implementation, as presented in
various chapters. Cross-references between chapters on a topic are highlighted throughout the chapters. For example,
boundary conditions are introduced in Chapter 1, its general implementation in COMSOL is discussed in Chapter 2,
more specific implementations discussed in Case studies in Chapter 6 and its theoretical description is provided in
Chapter 7.

Figure 1.4 and is highlighted through cross-referencing in the individual chapters.
Chapters 4 and 5 provide ways to visualize and further analyze the results.

1.4 Defining goals for problem formulation

Although the general goal of modeling is to improve understanding and facili-
tate optimization, it is critical to define the specific goals of a problem formulation
clearly at the outset, as the formulated problem very much depends on what exactly
we want to achieve from it. For example, Figure 1.5 shows two different formula-
tions for the physical situation of drug delivery through skin, using a patch. In the
first formulation the primary goal is to look at the effect of penetration enhancers on
diffusion through skin. Details of the patch construction are probably unnecessary
for this goal.

The second has the goal of finding the effect of using three different materials
for the microporous membrane (with correspondingly varying diffusivities) on
the rate of drug delivery. Obviously, the details of the membrane would have to
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10 Problem formulation
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Figure 1.5

Two different goals lead to two different problem formulations for approximately the same physical problem. In
Formulation 1, the goal is to study the drug transport primarily in the skin region. In Formulation 2, the goal is to study
the drug transport inside the patch as well as in the skin.
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11 1.6 Geometry: setting the computational domain

be included in this problem formulation. A list of possible goals in biomedical
problem formulation is shown in Table 1.1.

1.5 Simplify, simplify, simplify

We always simplify to achieve the least complex problem formulation possible,
keeping in mind the important phrase “as simple as possible, but no simpler.”
Sometimes we simplify because the software cannot handle the required com-
plexity. We simplify at other times to be within the limits of computing resources
(memory and cpu speed) available. Even if we need to eventually solve the more
complex problem, it is often instructive to solve a simpler problem first as simpli-
fication enhances our own understanding of the problem. By dissecting the prob-
lem into distinct processes, we can focus on a very specific goal within the more
complex physics. Starting simple also makes it easier to debug. Some possible
simplifications are: (1) starting with a 2D instead of a 3D geometry, or a 1D
instead of a 2D geometry; (2) starting with no heat transfer (isothermal formu-
lation) even though the physical situation is non-isothermal and therefore heat
transfer will eventually need to be added; (3) starting with constant properties
instead of properties varying with temperature or concentration, etc.

1.6 Geometry: setting the computational domain

The computational domain is the chosen region of the physical domain (actual
geometry) where computations will be performed. Generally speaking, the larger
the computational domain, the more computation is required. Thus, deciding on
the computational domain is a very critical step in problem formulation. Although
today’s numerical methods can handle various shapes and sizes, and computers
have significant speed and memory, prudent choices must be made in simplifying
the actual geometry; otherwise meshing can be difficult or we can run into cpu
speed and/or memory limitations.

In the example given in Figure 1.2, the geometry can have several possibili-
ties, as shown in Figure 1.6. Depending on the geometry chosen, the amount of
computation increases dramatically, but the question we have to answer is: are we
learning anything new as we move from 1D to 3D? If we think of the 3D geometry
in terms of r, θ and z directions, it seems reasonable to assume that most of the
diffusion of H2O2 will be in the r direction (since the boundary concentration is
uniform in the θ and z directions, respectively). Thus, a 1D computation, as shown
in Figure 1.6(c), should suffice. Sometimes, however, the software does not allow a
1D geometry. In this case, the 2D geometry can be made to represent a 1D physics
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