Sparse Image and Signal Processing:
Wavelets, Curvelets, Morphological Diversity

This book presents the state of the art in sparse and multiscale image and signal processing, covering linear multiscale transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Recent concepts of sparsity and morphological diversity are described and exploited for various problems such as denoising, inverse problem regularization, sparse signal decomposition, blind source separation, and compressed sensing.

This book wed theory and practice in examining applications in areas such as astronomy, biology, physics, digital media, and forensics. A final chapter explores a paradigm shift in signal processing, showing that previous limits to information sampling and extraction can be overcome in very significant ways.

MATLAB and IDL code accompany these methods and applications to reproduce the experiments and illustrate the reasoning and methodology of the research available for download at the associated Web site.

Jean-Luc Starck is Senior Scientist at the Fundamental Laws of the Universe Research Institute, CEA-Saclay. He holds a PhD from the University of Nice Sophia Antipolis and the Observatory of the Côte d’Azur, and a Habilitation from the University of Paris 11. He has held visiting appointments at the European Southern Observatory, the University of California Los Angeles, and the Statistics Department, Stanford University. He is author of the following books: Image Processing and Data Analysis: The Multiscale Approach and Astronomical Image and Data Analysis. In 2009, he won a European Research Council Advanced Investigator award.

Fionn Murtagh directs Science Foundation Ireland’s national funding programs in Information and Communications Technologies, and in Energy. He holds a PhD in Mathematical Statistics from the University of Paris 6, and a Habilitation from the University of Strasbourg. He has held professorial chairs in computer science at the University of Ulster, Queen’s University Belfast, and now in the University of London at Royal Holloway. He is a Member of the Royal Irish Academy, a Fellow of the International Association for Pattern Recognition, and a Fellow of the British Computer Society.

Jalal M. Fadili graduated from the École Nationale Supérieure d’Ingénieurs (ENSI), Caen, France, and received MSc and PhD degrees in signal processing, and a Habilitation, from the University of Caen. He was McDonnell-Pew Fellow at the University of Cambridge in 1999–2000. Since 2001, he is Associate Professor of Signal and Image Processing at ENSI. He has held visiting appointments at Queensland University of Technology, Stanford University, Caltech, and EPFL.
SPARSE IMAGE AND SIGNAL PROCESSING

Wavelets, Curvelets, Morphological Diversity

Jean-Luc Starck
Centre d’Études de Saclay, France

Fionn Murtagh
Royal Holloway, University of London

Jalal M. Fadili
École Nationale Supérieure d’Ingénieurs, Caen
Contents

Acronyms ix
Notation xiii
Preface xv

1 Introduction to the World of Sparsity 1
1.1 Sparse Representation 1
1.2 From Fourier to Wavelets 5
1.3 From Wavelets to Overcomplete Representations 6
1.4 Novel Applications of the Wavelet and Curvelet Transforms 8
1.5 Summary 15

2 The Wavelet Transform 16
2.1 Introduction 16
2.2 The Continuous Wavelet Transform 16
2.3 Examples of Wavelet Functions 18
2.4 Continuous Wavelet Transform Algorithm 21
2.5 The Discrete Wavelet Transform 22
2.6 Nondyadic Resolution Factor 28
2.7 The Lifting Scheme 31
2.8 Wavelet Packets 34
2.9 Guided Numerical Experiments 38
2.10 Summary 44

3 Redundant Wavelet Transform 45
3.1 Introduction 45
3.2 The Undecimated Wavelet Transform 46
3.3 Partially Decimated Wavelet Transform 49
3.4 The Dual-Tree Complex Wavelet Transform 51
3.5 Isotropic Undecimated Wavelet Transform: Starlet Transform 53
3.6 Nonorthogonal Filter Bank Design 58
3.7 Pyramidal Wavelet Transform 64
Contents

3.8 Guided Numerical Experiments ... 69
3.9 Summary .. 74

4 Nonlinear Multiscale Transforms ... 75
4.1 Introduction .. 75
4.2 Decimated Nonlinear Transform ... 75
4.3 Multiscale Transform and Mathematical Morphology 77
4.4 Multiresolution Based on the Median Transform 81
4.5 Guided Numerical Experiments .. 86
4.6 Summary .. 88

5 The Ridgelet and Curvelet Transforms 89
5.1 Introduction .. 89
5.2 Background and Example .. 89
5.3 Ridgelets ... 91
5.4 Curvelets .. 100
5.5 Curvelets and Contrast Enhancement 110
5.6 Guided Numerical Experiments .. 112
5.7 Summary .. 118

6 Sparsity and Noise Removal ... 119
6.1 Introduction .. 119
6.2 Term-By-Term Nonlinear Denoising 120
6.3 Block Nonlinear Denoising .. 127
6.4 Beyond Additive Gaussian Noise ... 132
6.5 Poisson Noise and the Haar Transform 134
6.6 Poisson Noise with Low Counts ... 136
6.7 Guided Numerical Experiments .. 143
6.8 Summary .. 145

7 Linear Inverse Problems ... 149
7.1 Introduction .. 149
7.2 Sparsity-Regularized Linear Inverse Problems 151
7.3 Monotone Operator Splitting Framework 152
7.4 Selected Problems and Algorithms 160
7.5 Sparsity Penalty with Analysis Prior 170
7.6 Other Sparsity-Regularized Inverse Problems 172
7.7 General Discussion: Sparsity, Inverse Problems, and Iterative Thresholding .. 174
7.8 Guided Numerical Experiments .. 176
7.9 Summary .. 178

8 Morphological Diversity ... 180
8.1 Introduction .. 180
8.2 Dictionary and Fast Transformation 183
8.3 Combined Denoising .. 183
8.4 Combined Deconvolution ... 188
8.5 Morphological Component Analysis 190
Contents

8.6 Texture-Cartoon Separation 198
8.7 inpainting 204
8.8 Guided Numerical Experiments 210
8.9 Summary 216

9 Sparse Blind Source Separation 218
9.1 Introduction 218
9.2 Independent Component Analysis 220
9.3 Sparsity and Multichannel Data 224
9.4 Morphological Diversity and Blind Source Separation 226
9.5 Illustrative Experiments 237
9.6 Guided Numerical Experiments 242
9.7 Summary 244

10 Multiscale Geometric Analysis on the Sphere 245
10.1 Introduction 245
10.2 Data on the Sphere 246
10.3 Orthogonal Haar Wavelets on the Sphere 248
10.4 Continuous Wavelets on the Sphere 249
10.5 Redundant Wavelet Transform on the Sphere with Exact
 Reconstruction 253
10.6 Curvelet Transform on the Sphere 261
10.7 Restoration and Decomposition on the Sphere 266
10.8 Applications 269
10.9 Guided Numerical Experiments 272
10.10 Summary 276

11 Compressed Sensing 277
11.1 Introduction 277
11.2 Incoherence and Sparsity 278
11.3 The Sensing Protocol 278
11.4 Stable Compressed Sensing 280
11.5 Designing Good Matrices: Random Sensing 282
11.6 Sensing with Redundant Dictionaries 283
11.7 Compressed Sensing in Space Science 283
11.8 Guided Numerical Experiments 285
11.9 Summary 286

References 289
List of Algorithms 311
Index 313

Color Plates follow page 148
Acronyms

1-D, 2-D, 3-D one-dimensional, two-dimensional, three-dimensional
AAC advanced audio coding
AIC Akaike information criterion
BCR block-coordinate relaxation
BIC Bayesian information criterion
BP basis pursuit
BPDN basis pursuit denoising
BSS blind source separation
CCD charge-coupled device
CeCILL CEA CNRS INRIA Logiciel Libre
CMB cosmic microwave background
COBE Cosmic Background Explorer
CTS curvelet transform on the sphere
CS compressed sensing
CWT continuous wavelet transform
dB decibel
DCT discrete cosine transform
DCTG1, DCTG2 first-generation discrete curvelet transform, second-generation discrete curvelet transform
DR Douglas-Rachford
DRT discrete ridgelet transform
DWT discrete wavelet transform
ECP equidistant coordinate partition
EEG electroencephalography
EFICA efficient fast independent component analysis
EM expectation maximization
ERS European remote sensing
ESA European Space Agency
FB forward-backward
FDR false discovery rate
FFT fast Fourier transform
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR</td>
<td>finite impulse response</td>
</tr>
<tr>
<td>FITS</td>
<td>Flexible Image Transport System</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FSS</td>
<td>fast slant stack</td>
</tr>
<tr>
<td>FWER</td>
<td>familywise error rate</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width at half maximum</td>
</tr>
<tr>
<td>GCV</td>
<td>generalized cross-validation</td>
</tr>
<tr>
<td>GGD</td>
<td>generalized Gaussian distribution</td>
</tr>
<tr>
<td>GLESP</td>
<td>Gauss-Legendre sky pixelization</td>
</tr>
<tr>
<td>GMCA</td>
<td>generalized morphological component analysis</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HEALPix</td>
<td>hierarchical equal area isolatitude pixelization</td>
</tr>
<tr>
<td>HSD</td>
<td>hybrid steepest descent</td>
</tr>
<tr>
<td>HTM</td>
<td>hierarchical triangular mesh</td>
</tr>
<tr>
<td>ICA</td>
<td>independent component analysis</td>
</tr>
<tr>
<td>ICF</td>
<td>inertial confinement fusion</td>
</tr>
<tr>
<td>IDL</td>
<td>interactive data language</td>
</tr>
<tr>
<td>IFFT</td>
<td>inverse fast Fourier transform</td>
</tr>
<tr>
<td>IHT</td>
<td>iterative hard thresholding</td>
</tr>
<tr>
<td>iid</td>
<td>independently and identically distributed</td>
</tr>
<tr>
<td>IRAS</td>
<td>Infrared Astronomical Satellite</td>
</tr>
<tr>
<td>ISO</td>
<td>Infrared Space Observatory</td>
</tr>
<tr>
<td>IST</td>
<td>iterative soft thresholding</td>
</tr>
<tr>
<td>IUWT</td>
<td>isotropic undecimated wavelet (starlet) transform</td>
</tr>
<tr>
<td>JADE</td>
<td>joint approximate diagonalization of eigen-matrices</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>KL</td>
<td>Kullback-Leibler</td>
</tr>
<tr>
<td>LARS</td>
<td>least angle regression</td>
</tr>
<tr>
<td>LP</td>
<td>linear programming</td>
</tr>
<tr>
<td>lsc</td>
<td>lower semicontinuous</td>
</tr>
<tr>
<td>MAD</td>
<td>median absolute deviation</td>
</tr>
<tr>
<td>MAP</td>
<td>maximum a posteriori</td>
</tr>
<tr>
<td>MCA</td>
<td>morphological component analysis</td>
</tr>
<tr>
<td>MDL</td>
<td>minimum description length</td>
</tr>
<tr>
<td>MI</td>
<td>mutual information</td>
</tr>
<tr>
<td>ML</td>
<td>maximum likelihood</td>
</tr>
<tr>
<td>MMSE</td>
<td>minimum mean squares estimator</td>
</tr>
<tr>
<td>MMT</td>
<td>multiscale median transform</td>
</tr>
<tr>
<td>MMV</td>
<td>multiple measurements vectors</td>
</tr>
<tr>
<td>MOLA</td>
<td>Mars Orbiter Laser Altimeter</td>
</tr>
<tr>
<td>MOM</td>
<td>mean of maximum</td>
</tr>
<tr>
<td>MP</td>
<td>matching pursuit</td>
</tr>
<tr>
<td>MP3</td>
<td>MPEG-1 Audio Layer 3</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Picture Experts Group</td>
</tr>
<tr>
<td>MR</td>
<td>magnetic resonance</td>
</tr>
<tr>
<td>MRF</td>
<td>Markov random field</td>
</tr>
<tr>
<td>MSE</td>
<td>mean square error</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MS-VST</td>
<td>multiscale variance stabilization transform</td>
</tr>
<tr>
<td>NLA</td>
<td>nonlinear approximation</td>
</tr>
<tr>
<td>OFRT</td>
<td>orthonormal finite ridgelet transform</td>
</tr>
<tr>
<td>OMP</td>
<td>orthogonal matching pursuit</td>
</tr>
<tr>
<td>OSCIR</td>
<td>Observatory Spectrometer and Camera for the Infrared</td>
</tr>
<tr>
<td>OWT</td>
<td>orthogonal wavelet transform</td>
</tr>
<tr>
<td>PACS</td>
<td>Photodetector Array Camera and Spectrometer</td>
</tr>
<tr>
<td>PCA</td>
<td>principal components analysis</td>
</tr>
<tr>
<td>PCTS</td>
<td>pyramidal curvelet transform on the sphere</td>
</tr>
<tr>
<td>PDE</td>
<td>partial differential equation</td>
</tr>
<tr>
<td>pdf</td>
<td>probability density function</td>
</tr>
<tr>
<td>PMT</td>
<td>pyramidal median transform</td>
</tr>
<tr>
<td>POCS</td>
<td>projections onto convex sets</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>PSNR</td>
<td>peak signal-to-noise ratio</td>
</tr>
<tr>
<td>PWT</td>
<td>partially decimated wavelet transform</td>
</tr>
<tr>
<td>PWTS</td>
<td>pyramidal wavelet transform on the sphere</td>
</tr>
<tr>
<td>QMF</td>
<td>quadrature mirror filters</td>
</tr>
<tr>
<td>RIC</td>
<td>restricted isometry constant</td>
</tr>
<tr>
<td>RIP</td>
<td>restricted isometry property</td>
</tr>
<tr>
<td>RNA</td>
<td>relative Newton algorithm</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>Sea-viewing Wide Field-of-view Sensor</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>s.t.</td>
<td>subject to</td>
</tr>
<tr>
<td>STFT</td>
<td>short-time Fourier transform</td>
</tr>
<tr>
<td>StOMP</td>
<td>Stage-wise Orthogonal Matching Pursuit</td>
</tr>
<tr>
<td>SURE</td>
<td>Stein unbiased risk estimator</td>
</tr>
<tr>
<td>TV</td>
<td>total variation</td>
</tr>
<tr>
<td>UDWT</td>
<td>undecimated discrete wavelet transform</td>
</tr>
<tr>
<td>USFFT</td>
<td>unequispaced fast Fourier transform</td>
</tr>
<tr>
<td>UWT</td>
<td>undecimated wavelet transform</td>
</tr>
<tr>
<td>UWTS</td>
<td>undecimated wavelet transform on the sphere</td>
</tr>
<tr>
<td>VST</td>
<td>variance-stabilizing transform</td>
</tr>
<tr>
<td>WMAP</td>
<td>Wilkinson Microwave Anisotropy Probe</td>
</tr>
<tr>
<td>WT</td>
<td>wavelet transform</td>
</tr>
</tbody>
</table>
Notation

Functions and Signals
\(f(t) \) continuous-time function, \(t \in \mathbb{R} \)
\(f(t) \) or \(f(t_1, \ldots, t_d) \) \(d \)-dimensional continuous-time function, \(t \in \mathbb{R}^d \)
\(f[k] \) discrete-time signal, \(k \in \mathbb{Z} \), or \(k \)th entry of a finite-dimensional vector
\(f[k] \) or \(f[k_1, \ldots] \) \(d \)-dimensional discrete-time signal, \(k \in \mathbb{Z}^d \)
\(\hat{f} \) time-reversed version of \(f \) as a function
\(\hat{f}(t) = f(-t), \forall t \in \mathbb{R} \) or signal
\(\hat{f}[k] = f[-k], \forall k \in \mathbb{Z} \)
\(f^* \) complex conjugate of a function or signal
\(H(z) \) \(z \) transform of a discrete filter \(h \)
\(\text{lhs} \sim \text{rhs} \) \(\text{lhs} \) is equivalent to \(\text{rhs} \); \(\text{lhs} = O(\text{rhs}) \) and \(\text{rhs} = O(\text{lhs}) \)
\(\text{lhs} = O(\text{rhs}) \) \(\text{lhs} \) is of order \(\text{rhs} \); there exists a constant \(C > 0 \) such that \(\text{lhs} \leq C \text{rhs} \)
\(\mathbf{1}_{\text{condition}} \) \(1 \) if condition is met, and zero otherwise
\(L_2(\Omega) \) space of square-integrable functions on a continuous domain \(\Omega \)
\(\ell_2(\Omega) \) space of square-summable signals on a discrete domain \(\Omega \)
\(\Gamma_0(\mathcal{H}) \) class of proper lower-semicontinuous convex functions from \(\mathcal{H} \) to \(\mathbb{R} \cup \{+\infty\} \)

Operators on Signals or Functions
\([\cdot]_2 \) down-sampling or decimation by a factor 2
\([\cdot]_{2^*} \) down-sampling by a factor 2 that keeps even samples
\([\cdot]_{2^*} \) down-sampling by a factor 2 that keeps odd samples
\(\odot \) or \([\cdot]_{2^*} \) up-sampling by a factor 2, i.e., zero insertion between each two samples
\([\cdot]_{2^*} \) even-sample zero insertion
\([\cdot]_{2^*} \) odd-sample zero insertion
Notation

\[\cdot \] \,\text{down-sampling or decimation by a factor 2 in each direction of a two-dimensional image}

* \,\text{continuous convolution}

⋆ \,\text{discrete convolution}

⊙ \,\text{composition (arbitrary)}

Matrices, Linear Operators, and Norms

\,T \,\text{transpose of a vector or a matrix}

\(M^* \) \,\text{adjoint of } M

\(M[i,j] \) \,\text{entry at } i\text{th row and } j\text{th column of a matrix } M

\text{det}(M) \,\text{determinant of a matrix } M

\text{rank}(M) \,\text{rank of a matrix } M

\text{diag}(M) \,\text{diagonal matrix with the same diagonal elements as its argument } M

\text{trace}(M) \,\text{trace of a square matrix } M

\text{vect}(M) \,\text{stacks the columns of } M \text{ in a long column vector}

\,+ \,\text{pseudo-inverse of } M

I \,\text{identity operator or identity matrix of appropriate dimension; } I_n \text{ if the dimension is not clear from the context}

\langle \cdot , \cdot \rangle \,\text{inner product (in a pre-Hilbert space)}

\| \cdot \| \,\text{associated norm}

\| \cdot \|_p \,p \geq 1, \ell_p \text{ norm of a signal}

\| \cdot \|_0 \,\ell_0 \text{ quasi-norm of a signal; number of nonzero elements}

\| \cdot \|_{\text{tv}} \,\text{discrete total variation (semi)norm}

\nabla \,\text{discrete gradient of an image}

\text{div} \,\text{discrete divergence operator (adjoint of } \nabla)

\| \cdot \|_\text{F} \,\text{Frobenius norm of a matrix}

\otimes \,\text{tensor product}

Random Variables and Vectors

\(\varepsilon \sim \mathcal{N}(\mu, \Sigma) \) \,\varepsilon \text{ is normally distributed with mean } \mu \text{ and covariance } \Sigma

\(\varepsilon \sim \mathcal{N}(\mu, \sigma^2) \) \,\varepsilon \text{ is additive white Gaussian with mean } \mu \text{ and variance } \sigma^2

\(\varepsilon \sim \mathcal{P}(\lambda) \) \,\varepsilon \text{ is Poisson distributed with intensity (mean) } \lambda

\text{E}[\cdot] \,\text{expectation operator}

\text{Var}[\cdot] \,\text{variance operator}

(\varepsilon; \mu, \sigma^2) \,\text{normal probability density function of mean } \mu \text{ and variance } \sigma^2

(\varepsilon; \mu, \sigma^2) \,\text{normal cumulative distribution of mean } \mu \text{ and variance } \sigma^2
Often, nowadays, one addresses public understanding of mathematics and rigor by pointing to important applications and how they underpin a great deal of science and engineering. In this context, multiple resolution methods in image and signal processing, as discussed in depth in this book, are important. Results of such methods are often visual. Results, too, can often be presented to the layperson in an easily understood way. In addition to those aspects that speak powerfully in favor of the methods presented here, the following is worth noting. Among the most cited articles in statistics and signal processing, one finds works in the general area of what we cover in this book.

The methods discussed in this book are essential underpinnings of data analysis, of relevance to multimedia data processing and to image, video, and signal processing. The methods discussed here feature very crucially in statistics, in mathematical methods, and in computational techniques.

Domains of application are incredibly wide, including imaging and signal processing in biology, medicine, and the life sciences generally; astronomy, physics, and the natural sciences; seismology and land use studies, as indicative subdomains from geology and geography in the earth sciences; materials science, metrology, and other areas of mechanical and civil engineering; image and video compression, analysis, and synthesis for movies and television; and so on.

There is a weakness, though, in regard to well-written available works in this area: the very rigor of the methods also means that the ideas can be very deep. When separated from the means to apply and to experiment with the methods, the theory and underpinnings can require a great deal of background knowledge and diligence – and study, too – to grasp the essential material.

Our aim in this book is to provide an essential bridge between theoretical background and easily applicable experimentation. We have an additional aim, namely, that coverage be as extensive as can be, given the dynamic and broad field with which we are dealing.

Our approach, which is wedded to theory and practice, is based on a great deal of practical engagement across many application areas. Very varied applications are used for illustration and discussion in this book. This is natural, given how
ubiquitous the wavelet and other multiresolution transforms have become. These transforms have become essential building blocks for addressing problems across most of data, signal, image, and indeed information handling and processing. We can characterize our approach as premised on an embedded systems view of how and where wavelets and multiresolution methods are to be used.

Each chapter has a section titled “Guided Numerical Experiments,” complementing the accompanying description. In fact, these sections independently provide the reader with a set of recipes for quick and easy trial and assessment of the methods presented. Our bridging of theory and practice uses openly accessible and freely available as well as very widely used MATLAB toolboxes. In addition, interactive data language is used, and all code described and used here is freely available.

The scripts that we discuss in this book are available online (http://www.SparseSignalRecipes.info) together with the sample images used. In this form, the software code is succinct and easily shown in the text of the book. The code caters to all commonly used platforms: Windows, Macintosh, Linux, and other Unix systems.

In this book, we exemplify the theme of reproducible research. Reproducibility is at the heart of the scientific method and all successful technology development. In theoretical disciplines, the gold standard has been set by mathematics, where formal proof, in principle, allows anyone to reproduce the cognitive steps leading to verification of a theorem. In experimental disciplines, such as biology, physics, or chemistry, for a result to be well established, particular attention is paid to experiment replication. Computational science is a much younger field than mathematics but is already of great importance. By reproducibility of research, here it is recognized that the outcome of a research project is not just publication, but rather the entire environment used to reproduce the results presented, including data, software, and documentation. An inspiring early example was Don Knuth’s seminal notion of literate programming, which he developed in the 1980s to ensure trust or even understanding for software code and algorithms. In the late 1980s, Jon Claerbout, of Stanford University, used the Unix Make tool to guarantee automatic rebuilding of all results in a paper. He imposed on his group the discipline that all research books and publications originating from his group be completely reproducible.

In computational science, a paradigmatic end product is a figure in a paper. Unfortunately, it is rare that the reader can attempt to rebuild the authors’ complex system in an attempt to understand what the authors might have done over months or years. Through our providing software and data sets coupled to the figures in this book, the reader will be able to reproduce what we have here.

This book provides both a means to access the state of the art in theory and a means to experiment through the software provided. By applying, in practice, the many cutting-edge signal processing approaches described here, the reader will gain a great deal of understanding. As a work of reference, we believe that this book will remain invaluable for a long time to come.

The book is aimed at graduate-level study, advanced undergraduate study, and self-study. The target reader includes whoever has a professional interest in image and signal processing. Additionally, the target reader is a domain specialist in data analysis in any of a very wide swath of applications who wants to adopt innovative approaches in his or her field. A further class of target reader is interested in learning all there is to know about the potential of multiscale methods and also in
having a very complete overview of the most recent perspectives in this area. Another class of target reader is undoubtedly the student – an advanced undergraduate project student, for example, or a doctoral student – who needs to grasp theory and application-oriented understanding quickly and decisively in quite varied application fields as well as in statistics, industrially oriented mathematics, electrical engineering, and elsewhere.

The central themes of this book are scale, sparsity, and morphological diversity. The term sparsity implies a form of parsimony. Scale is synonymous with resolution.

Colleagues we would like to acknowledge include Bedros Afeyan, Nabila Aghanim, Albert Bijaoui, Emmanuel Candès, Christophe Chesneau, David Donoho, Miki Elad, Olivier Forni, Yassir Moudden, Gabriel Peyré, and Bo Zhang. We would like to particularly acknowledge Jérôme Bobin, who contributed to the blind source separation chapter. We acknowledge joint analysis work with the following, relating to images in Chapter 1: Will Aicken, P. A. M. Basheer, Kurt Birkle, Adrian Long, and Paul Walsh.

The cover art was designed by Aurélie Bordenave (http://www.aurel-illus.com). We thank her for this work.