
Introduction

Micro- and nanofabricated devices have led to revolutionary changes in our ability to
manipulate tiny volumes of fluid or micro- and nanoparticles contained therein. This
has led to countless applications for chemical and particulate separation and analysis,
biological characterization, sensors, cell capture and counting, micropumps and actua-
tors, high-throughput design and parallelization, and system integration, to name a few
areas. Because biological and chemical analysis is typically concerned with molecules
and bioparticles with small dimensions (some examples are shown in Fig. 0.1), the tools
used to manipulate these objects are naturally of a similar scale, and the developments
in micro- and nanofabrication in recent decades has brought engineering tools to a scale
that easily matches these objects.

From a fluid-mechanical standpoint, our ability to manufacture micro- and nano-
scale devices creates a number of challenges and provides matching opportunities, some
of which are denoted schematically in Fig. 0.2. If we focus on liquid-phase devices,
which have dominated most bioanalytical applications, shrinking the length scales makes
interfacial phenomena and electrokinetic phenomena much more important, and re-
duces the importance of gravity and pressure. The no-slip boundary condition, safely
assumed for macroscopic flows, can be inaccurate when the length scale is small. Al-
though the low-Reynolds-number characteristic of most of these flows eliminates the
challenges of nonlinearity in the convective term and the associated difficulty in mod-
eling turbulent flows, we are instead forced to consider the nonlinearity of the source
term in the Poisson–Boltzmann equation, nonlinearity of the coupling of electrodynam-
ics with fluid flow, and uncertainty in predicting electroosmotic boundary conditions.
Often, the microfluidics researcher worries not about how to solve the relevant govern-
ing equations and boundary conditions, but rather what those equations and boundary
conditions are and how his or her analytical goals can be reconciled with fabrication

Fig. 0.1 Length scales of some biological objects ranging clockwise from top left from nano- to microscale.
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Fig. 0.2 Some fundamental changes in fluid physics and the length scales at which this occurs.

and experimentation concerns. Microscale problems are approached by use of contin-
uum modeling and analysis, but the continuum governing equations must be modified to
account for forces that are routinely ignored in macroscale systems. Figure 0.3, for exam-
ple, highlights the general structure of a microfluidic device and some of the parametric
inputs and fluid issues attendant with their use. Nanoscale problems are approached with
a mix of continuum and atomistic approaches, depending on the the problem.

General properties of micro- and nanoscale flows. This text considers flow in micro- and
nanofabricated devices, typically fabricated by photolithographic patterning combined
with etching or molding processes evolved from microcircuit fabrication processes. The
nature of the geometries, length scales, and materials used in these processes leads to
a specialized set of physical phenomena and flow regimes, which have their own inter-
esting properties and applications. Microscale flows are typically laminar owing to the
short length scales, but can have large mass transfer Peclet numbers owing to the low
diffusivity of macromolecules and particles of interest. These flows can be driven with

Fig. 0.3 A microfluidic device, its inputs, and some aspects of the fluid and analyte flow therein.
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Fig. 0.4 (a) Patterned interdigitated electrodes used [1] to isolate leukemia cells from diluted blood. (b) A dilute blood
suspension flows through a channel, and dielectrophoresis (Chapter 17) is used to capture both leukemia cells
and erythrocytes (red blood cells) while (c) subsequently the frequency applied to the electrodes was decreased
to retain the leukemia cells and elute the erythrocytes. (d) Microsystems are also used as [2] “microbeakers”
whereby particles are caged from a flow stream by use of dielectrophoresis while chemistry and analysis are
conducted by flowing various solutions over the captured particles on a microscope stage. Used with permission.

pressure, but applied electric fields are often more convenient or elegant to actuate these
systems. Even if not applied, intrinsic electric fields exist at interfaces in all cases, driven
usually by chemical reaction. Thus electrodynamics, chemistry, and fluid mechanics are
inextricably intertwined, so that electric fields can create fluid flow and fluid flow can
create electric fields, with a degree of coupling driven by the surface chemistry. The
flow coupling is described by electrostatic source terms in the Navier–Stokes equations
or particle transport equations. Many useful tools arise from these forces, such as elec-
trokinetic pumps and dielectrophoretic manipulation of cells.

Boundary conditions become much more of an issue in microsystems, owing to
high surface area–volume ratios. Boundary conditions that are taken for granted at
the macroscale (e.g., the no-slip condition) can often fail in these systems. Further, mi-
croscale fluid mechanics is often closely related to chemical issues at surfaces. Multiphase
implementations, designed to optimize certain aspects of transport, lead to additional in-
terfacial concerns. Here, our boundary conditions must vary based on electric fields or
chemistry.

Our ability to engineer and model microdevices is often limited by fabrication issues
and instrumentation. Typical geometries resulting from microfabrication influence our
discussion of transport issues in these systems – for example, most micro- and nanode-
vices are quasi-2D, and thus many of our analytical techniques will be used with quasi-2D
structures in mind. The small scale requires specific instrumentation and techniques that
facilitate inquiry into microscale flows. Our microfluidic devices are often implemented
to study bioanalytes such as proteins or DNA, and bioparticles such as cells (Fig. 0.4) or
virions. Often, we need to work in non-Newtonian systems, which requires a modifica-
tion of the constitutive relation used in the Navier–Stokes equations.
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4 Introduction

Outline of the material covered in this text. To a great extent, the material in this text is
specified by the incompressibility condition for mass conservation, the Navier–Stokes
equations for fluid flow and momentum conservation, the Nernst–Planck equation for
species transport, and the Poisson equation for electrostatics, combined with bound-
ary conditions for microchannel walls, inlets and outlets, particle/droplet/bubble inter-
faces, and electrodes. We combine these equations in various ways throughout, starting
with low-Reynolds-number fluid mechanics described by incompressibility and Navier–
Stokes, and then folding in the effects of electrodynamics first with equilibrium systems
(defined by the Poisson equation and Boltzmann statistics) and later with nonequi-
librium systems (defined by the Poisson equation and the Nernst–Planck equation).
By their nature, the results of these analyses lend themselves naturally to the use of
boundary-layer theory and matched asymptotic techniques (for the electrical double
layer) and a coupling matrix formulation for electromechanical coupling (owing to the
linearity of the Stokes equations). Throughout, additional results of condensed matter
physics and chemistry are included as needed to describe unique aspects of these flows.

The text begins with low-Reynolds-number fluid mechanics, to ensure that the treat-
ment stands on its own and to put these classical topics in a micro- or nanoscale context.
For those cases in which the Reynolds number is low, boundary conditions are classi-
cal, solutes are small, and no electric fields are applied, classical undergraduate fluid-
mechanical tools apply. Chapters 1 and 2 represent primarily classical material, with
the notable exception being the discussion of Navier slip models in Chapter 1 – although
this model is itself classical, experimental measurements of slip lengths have mostly been
performed in the last twenty years. Chapter 3 on hydraulic circuits has focused relevance
owing to the prevalence of long narrow channels in microdevices and the utility of cir-
cuit analysis in designing massively parallel microfluidic circuits. This chapter also leads
into Chapter 4, which combines standard undergraduate mass transfer with the generally
graduate level topic of the kinematics of mixing and chaos. It also highlights the particu-
lar importance of the low-Re, high-Pe limit found in many microfluidic devices, including
both its detrimental effect on mixing and its benefits to laminar-flow-patterning devices.

The text then addresses the effect of electric fields on flow far from walls, with par-
ticular attention given to electroosmosis. Chapter 5 includes an elementary treatment
of electrostatics and electrodynamics, which allows Chapter 6 to present an integral
analysis of electroosmosis that highlights flow-current similitude outside the electrical
double layer. Because purely electroosmotic flows with thin double layers are poten-
tial flows, Chapter 7 provides a discussion of potential flow. Because Chapters 3, 5, and
7 all use complex numbers, Appendix G provides a reference for key concepts. Chapter 8
presents Stokes flow relations, with specific attention to the motion of small particles. Al-
though the flows in Chapter 8 are not primarily driven by electric fields, the material in
this chapter builds on analytical techniques from Chapter 7 and is thus positioned im-
mediately after it. Readers at this point are directed to Appendix F, which introduces
the multipolar theory for the Laplace and Stokes equations, and prepares for later sub-
jects, in particular multipolar models of dielectrophoretic forces. Electrokinetic pumps
(Section 6.5) are discussed as an early application, as much of the work on electrokinetic
pumps requires only the material in these introductory chapters.

The attention then turns to the boundary layer close to micro- and nanodevice
interfaces. With background information on electrolyte solution properties from Ap-
pendix B, Chapter 9 introduces the details of the Gouy–Chapman electrical double layer,
as well as modified Poisson–Boltzmann equations. Appendix H provides background on
interaction potentials and facilitates expansion on these ideas. Chapter 10 summarizes
experimental observations of the surface potential that is the boundary condition that
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5 Introduction

drives the EDL models. With this description, the text proceeds to nonequilibrium de-
scription of species and charge distributions (Chapter 11) with applications to microchip
separations, particularly protein separations (Chapter 12). These skills enable discus-
sion of electrophoresis of small particles (Chapter 13), which is the first case in which the
double-layer thickness plays a primary role and the fluid mechanics and the ion distri-
bution in the double layer exhibit two-way coupling. Macromolecule transport follows,
building on the descriptions of small ion and microparticle transport – we choose to
discuss this by using DNA (Chapter 14). This segues into nanofluidics, in particular a
discussion of electrokinetic effects with full two-way coupling (Chapter 15).

Finally, we explore solutions for which interfacial charge is no longer in equilib-
rium – here, the dynamics of charge caused by interfacial potential or interfacial dis-
continuities in current are critical. We discuss, in turn, the dynamics of electrical double
layers at electrodes and polarizable materials (Chapter 16) and nonlinear electrokinetic
manipulation of particles or droplets by using dielectrophoresis, magnetophoresis, and
electrowetting (Chapter 17).

Supplementary reading. Throughout the text, supplementary reading is provided in
each chapter to expand on the material of that chapter. By necessity, some topics
have been omitted, and the reader is pointed here to excellent source material for
a few of these topics. This text omits gas-phase microfluidic flows, for which Karni-
adakis [3] is a thorough source. We also omit microfabrication; general microfabrica-
tion details can be found in [4, 5], and treatments with a focus on microfluidics can
be found in [6, 7]. This text is primarily focused on analytical techniques and avoids
numerical simulation approaches. Some useful sources for numerical techniques in-
clude [8, 9, 10, 11, 12, 13, 14, 15]; Refs. [12, 13, 14] have stressed accessibility and are
recommended for those seeking an introduction to numerical work.
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1 Kinematics, Conservation Equations, and Boundary
Conditions for Incompressible Flow

This text describes liquid flow in microsystems, primarily flow of water and aqueous so-
lutions. To this end, this chapter describes basic relations suitable for describing the flow
of water. For flows in microfluidic devices, liquids are well approximated as incompres-
sible, i.e., having approximately uniform density, so this text describes incompressible
flow exclusively.

This chapter describes the kinematics of flow fields, which describes the motion
and deformation of fluids. As part of this process, key concepts are introduced, such as
streamlines, pathlines, streaklines, the stream function, vorticity, circulation, and strain
rate and rotation rate tensors. These concepts provide the language used throughout the
text to communicate the modes of fluid motion and deformation. We discuss conserva-
tion of mass and momentum for incompressible flows of Newtonian fluids. Finally, we
discuss boundary conditions for the governing equations, including solid and free inter-
faces with surface tension, and in particular we give attention to the no-slip condition
and its applicability in micro- and nanoscale devices. This chapter assumes familiarity
with vector calculus, which is reviewed in Appendix C. Importantly, Appendix C also
covers the notation and coordinate systems used throughout.

We define a fluid as a material that deforms continuously when experiencing a
nonuniform stress of any magnitude. We are primarily interested in a continuum descrip-
tion of the fluid flow, meaning that we are interested in the macroscopic manifestation of
the motions of the individual molecules that make up the fluid, i.e., the velocity and the
pressure of the fluid as a function of time and space. We also consider continuum field
properties such as the temperature of the fluid or concentrations of chemical species in
solution.

1.1 FLUID STATICS

In the case in which the fluid is assumed motionless, the equilibrium of fluid is deter-
mined by the interplay between the fluid pressure and the body forces:

∇ p =
∑

i

�fi , (1.1)

where p is the pressure [Pa] and �fi is a body force per unit volume [N/m3]. Thus, in the
presence of body forces, the fluid-static equations predict that pressure varies spatially.
The most common fluid-static result relates to the pressure in a static column of liquid.
For liquid in a gravitational field, �fi = −	g ẑ, where g = 9.8 m/s2. Integrating this in the
z direction, we obtain

p − p0 = −	gz , (1.2)
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7 1.2 Kinematics of a Fluid Velocity Field

where p0 is the pressure at z = 0. Similar relations can be determined for fluid in other
potential fields, for example, charged fluids in an electric field.

1.2 KINEMATICS OF A FLUID VELOCITY FIELD

If we consider fluids in motion, we benefit from kinematic relations, which describe mo-
tion and deformation of a fluid. Because kinematics describes fluid motion but not the
forces that generate that motion, kinematic relations are properties of the continuum
velocity field alone. This velocity field gives the velocity at any point in space and time
and is denoted by �u(�r, t), where t is time and �r is a position vector specifying a location
in space. Kinematics provides language that helps us understand velocity fields as well as
the mathematical relationships that frame the physics of the system. Kinematic relations
and definitions that classify types of flows often provide insight into which governing
equation should be used.

1.2.1 Important geometric definitions

This subsection defines a number of curves that relate to the velocity field, namely path-
lines, streaklines, streamlines, and material lines, each of which can facilitate our analysis.
Streamlines are the most common tool used analytically to understand flows, because
streamlines are analytically simple to generate and provide a clear image of the instanta-
neous velocity in a system. Pathlines and streaklines, in contrast, are straightforward to
reproduce in the laboratory and are thus the most common experimental tools used for
visualization. In particular, compelling simplifications for two-dimensional (2D) flows
are achieved with the stream function, which is related to the streamlines in the system.
Two-dimensional flows with plane symmetry are often relevant in microfluidic devices,
because the devices created with lithography and etching often have a uniform depth.
These lines describe the motion of a fluid particle, i.e., a point that moves in a fluid flow
with a velocity equal to the local fluid velocity.

PATHLINES

Pathlines are the loci of points traced out by the motion through the flow of a fluid
particle that was at location �r0 at time t0 (see Fig. 1.1). We can envision a pathline by
imagining inserting a small fluorescent particle into a point in a fluid flow and then taking
a long exposure of the particle as a function of time. Pathlines experimentally are a
temporal record of the path of a point marker. The starting point and time of the fluid
particle as well as the time history of the velocity field influence the resulting pathlines.

STREAKLINES

Streaklines are the loci of fluid particles that have passed through a point �r0. We can
envision a streakline by imagining inserting a small tube into a point in a fluid flow,
releasing fluorescent dye from this tube starting at t0, and then taking a snapshot of the
dye at a later time. In this sense, streaklines experimentally are an instantaneous record
of a curvilinear marker. As was the case with pathlines, the starting point and time of
the dye release as well as the time history of the velocity field influence the resulting
pathlines. Figure 1.2 contrasts pathlines and streaklines.

STREAMLINES

Streamlines are lines that are everywhere tangent to the instantaneous velocity. Unlike
pathlines and streaklines, streamlines are properties of the instantaneous velocity field.
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8 Ch. 1. Kinematics, Conservation Equations, and Boundary Conditions

Fig. 1.1 Microparticle pathlines for a multiphase oil–water flow. Water inflow is from top, oil inflow from left and right.
The resulting tipstreaming flow is used to generate micron-sized oil droplets. Fluorescent particles in the aque-
ous phase form pathlines on the camera, illustrating the recirculation induced by the fast oil flow on the slower
water flow (Reproduced with permission from [16]).

For steady flow, all particles that pass through �r0 follow the same trajectory. This
trajectory is always tangent to the local velocity, and thus streamlines are identical to
pathlines and streaklines for steady flows.1

Importantly, for 2D flows, we can define a scalar function that defines these stream-
lines without integration. We define the stream function (which we denote as � for
plane-symmetric flows and �S for axially symmetric flows) such that its isocontours are
always tangent to the velocity.2 The stream function used depends on the nature of the
symmetry in the flow, whereas the mathematical form of the velocity–stream function
relationship is dependent on the coordinate system. In a plane 2D flow defined with
Cartesian variables, we define the stream function by using

u = ∂�

∂y
, (1.3)

v = −∂�

∂x
. (1.4)

The same plane 2D flow and stream function just described can be written in terms of
cylindrical coordinates as follows:

u = 1 ∂�

∂�
(1.5)

and

u� = −∂�

∂
. (1.6)

1 For all of these curves, the integration terminates at stagnation points (points of zero velocity). For
flows with stagnation points, generating complete streamlines sometimes requires that integration
commence from multiple starting points.

2 In fact, the preceding velocity–stream function relation satisfies two requirements: (1) that isocon-
tours of the stream function are streamlines, and (2) that any velocity field specified by the stream
function also satisfies the conservation of mass equation (1.21) discussed in Section 1.3. Using � or
�S to satisfy conservation of mass can greatly simplify fluid problems.
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9 1.2 Kinematics of a Fluid Velocity Field

Fig. 1.2 Streaklines and pathlines. A particle released from the origin at time t = 0 is denoted in black, and a stream of
dye released continuously from the origin starting at t = 0 is denoted in gray. The flow is the time-varying uni-
form flow u = cos t , v = sin t , which causes fluid particles to follow circular orbits. (a): location of the particle
and dye stream at four instants (as would be visualized experimentally by a short-exposure image). The instan-
taneous location of the dye stream is the streakline associated with the origin and t > 0. (b): locus of particle and
dye stream locations for t > 0 (as would be visualized experimentally by a long exposure starting at time t = 0).
The time history of the particle traces out a pathline associated with the origin and t = 0. (c): pathlines (solid
black lines) and streaklines (dashed gray lines) are shown by extracting the instantaneous dye contour from (a)
and the particle time history from (b). Streamlines at any instant (not shown) are all straight lines aligned at an
angle � = t with respect to the x axis.

For axisymmetric flows, we define the Stokes stream function �S, and the velocity–stream
function relationships are written in cylindrical coordinates as

u = 1 ∂�S

∂z
, (1.7)

uz = − 1 ∂�S

∂
, (1.8)

whereas in spherical coordinates, these relationships are given by

ur = 1
r2 sin �

∂�S

∂�
, (1.9)

u� = − 1
r sin �

∂�S

∂r
. (1.10)

The stream function for plane flows has units of square meters per second and is differ-
ent from the Stokes stream function for systems with axial symmetry, which has units of
cubic meters per second. The volumetric flow rate between two streamlines is related to
the difference between the stream functions of the two streamlines. For plane-symmetric
flow, the difference in stream function between two streamlines is equal to the volu-
metric flow per unit depth; for axisymmetric flow, the difference in the Stokes stream
function between two streamlines is equal to the volumetric flow per radian.

MATERIAL LINES

Material lines trace the location of a curve in a flow field at specific instants in time. We
can envision them by considering small fluorescent lines embedded in a fluid flow. Given
a curve C0 defined at a time t0, the material line C as a function of time is simply the curve
through the fluid particles that C0 originally comprised.
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10 Ch. 1. Kinematics, Conservation Equations, and Boundary Conditions

1.2.2 Strain rate and rotation rate tensors

For our purposes, a fluid is a material that responds to forces by deforming at a measur-
able rate, and a fluid’s unloaded state is defined by motionlessness but not by a specific
configuration. This is in contrast to a solid, which responds to an applied force by acquir-
ing a finite deformation from its unloaded state. For fluids the stresses (forces per unit
area) in the material are related to the rate of strain. The rate of strain or strain rate of a
fluid flow at a point is a measure of the velocity gradients at that point or, equivalently,
the rate at which fluid elements are being deformed by a flow. The response of fluids
is inherently viscous. For solids, the stresses (forces per unit area) in the material are
related to the strain. The strain of a solid material is a measure of its static deformation
from its unloaded state. In this sense, the response of solids is inherently elastic.

This subsection shows that the velocity gradients (expressed through the velocity
gradient tensor) can be rewritten in terms of a strain rate tensor and a rotation rate tensor.
Section 1.4 shows that the viscous forces or stresses in a Newtonian fluid (such as water
or air) are linearly proportional to the strain rates as expressed by the strain rate tensor.
The magnitude of the vorticity or, equivalently, the magnitude of the rotation rate tensor
dictates what analytical tools we use to treat a specific flow problem.

STRAIN RATE FOR UNIDIRECTIONAL FLOWS

Consider a unidirectional flow u = u(y) moving in the x direction. In this simple case,
the scalar strain rate magnitude

.
� [s−1] is given by

.
� = 1

2
∂u
∂y

. (1.11)

This unidirectional flow is simple, and this result is not general; however, it does illustrate
two basic ideas – that the strain rate is a measure of how rapidly the fluid elements are
deformed and that this property is related to the local velocity gradients. If the velocity
is uniform, fluid elements are not distorted. If u varies spatially, then a fluid element is
sheared, extended, or both.

GENERAL STRAIN RATE FOR THREE-DIMENSIONAL FLOWS

Equation (1.11) is simple and gives a scalar that measures the strain rate of a unidirec-
tional flow; however, its result is not general. For a general three-dimensional (3D) flow,
a scalar is not enough information to describe the deformation of fluid flow. The strain
rate tensor ��� [s−1] is a convenient way to record the detailed structure of the instanta-
neous fluid deformation. It also classifies two ways that a flow deforms: by extension and
by shear.

In Cartesian coordinates, the strain rate tensor is defined as

��� =
⎡
⎣ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ =

⎡
⎢⎢⎢⎣

∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

1
2

(
∂v
∂z + ∂w

∂y

)
1
2

(
∂u
∂z + ∂w

∂x

) 1
2

(
∂v
∂z + ∂w

∂y

)
∂w
∂z

⎤
⎥⎥⎥⎦ . (1.12)

strain rate tensor,
Cartesian
coordinates
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