Actuarial Mathematics for Life Contingent Risks

How can actuaries best equip themselves for the products and risk structures of the future? In this new textbook, three leaders in actuarial science give a modern perspective on life contingencies.

The book begins traditionally, covering actuarial models and theory, and emphasizing practical applications using computational techniques. The authors then develop a more contemporary outlook, introducing multiple state models, emerging cash flows and embedded options. Using spreadsheet-style software, the book presents large-scale, realistic examples. Over 150 exercises and solutions teach skills in simulation and projection through computational practice.

Balancing rigour with intuition, and emphasizing applications, this textbook is ideal not only for university courses, but also for individuals preparing for professional actuarial examinations and qualified actuaries wishing to renew and update their skills.

International Series on Actuarial Science

Christopher Daykin, Independent Consultant and Actuary
Angus Macdonald, Heriot-Watt University

The International Series on Actuarial Science, published by Cambridge University Press in conjunction with the Institute of Actuaries and the Faculty of Actuaries, contains textbooks for students taking courses in or related to actuarial science, as well as more advanced works designed for continuing professional development or for describing and synthesizing research. The series is a vehicle for publishing books that reflect changes and developments in the curriculum, that encourage the introduction of courses on actuarial science in universities, and that show how actuarial science can be used in all areas where there is long-term financial risk.
ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS

DAVID C. M. DICKSON
University of Melbourne

MARY R. HARDY
University of Waterloo, Ontario

HOWARD R. WATERS
Heriot-Watt University, Edinburgh
To
Carolann,
Vivien
and Phelim
Contents

Preface

1. **Introduction to life insurance**
 1.1 Summary 1
 1.2 Background 1
 1.3 Life insurance and annuity contracts 3
 1.3.1 Introduction 3
 1.3.2 Traditional insurance contracts 4
 1.3.3 Modern insurance contracts 6
 1.3.4 Distribution methods 8
 1.3.5 Underwriting 8
 1.3.6 Premiums 10
 1.3.7 Life annuities 11
 1.4 Other insurance contracts 12
 1.5 Pension benefits 12
 1.5.1 Defined benefit and defined contribution pensions 13
 1.5.2 Defined benefit pension design 13
 1.6 Mutual and proprietary insurers 14
 1.7 Typical problems 14
 1.8 Notes and further reading 15
 1.9 Exercises 15

2. **Survival models**
 2.1 Summary 17
 2.2 The future lifetime random variable 17
 2.3 The force of mortality 21
 2.4 Actuarial notation 26
 2.5 Mean and standard deviation of T_x 29
 2.6 Curtate future lifetime
 2.6.1 K_x and e_x 32

page xiv
Contents

2.6.2 The complete and curtate expected future lifetimes, \bar{e}_x and e_x 34
2.7 Notes and further reading 35
2.8 Exercises 36

3 Life tables and selection 41
3.1 Summary 41
3.2 Life tables 41
3.3 Fractional age assumptions 44
 3.3.1 Uniform distribution of deaths 44
 3.3.2 Constant force of mortality 48
3.4 National life tables 49
3.5 Survival models for life insurance policyholders 52
3.6 Life insurance underwriting 54
3.7 Select and ultimate survival models 56
3.8 Notation and formulae for select survival models 58
3.9 Select life tables 59
3.10 Notes and further reading 67
3.11 Exercises 67

4 Insurance benefits 73
4.1 Summary 73
4.2 Introduction 73
4.3 Assumptions 74
4.4 Valuation of insurance benefits 75
 4.4.1 Whole life insurance: the continuous case, \bar{A}_x 75
 4.4.2 Whole life insurance: the annual case, A_x 78
 4.4.3 Whole life insurance: the $1/m$thly case, $A^{(m)}_x$ 79
 4.4.4 Recursions 81
 4.4.5 Term insurance 86
 4.4.6 Pure endowment 88
 4.4.7 Endowment insurance 89
 4.4.8 Deferred insurance benefits 91
4.5 Relating \bar{A}_x, A_x and $A^{(m)}_x$ 93
 4.5.1 Using the uniform distribution of deaths assumption 93
 4.5.2 Using the claims acceleration approach 95
4.6 Variable insurance benefits 96
4.7 Functions for select lives 101
4.8 Notes and further reading 101
4.9 Exercises 102

5 Annuities 107
5.1 Summary 107
5.2 Introduction 107
5.3 Review of annuities-certain 108
5.4 Annual life annuities 108
 5.4.1 Whole life annuity-due 109
 5.4.2 Term annuity-due 112
 5.4.3 Whole life immediate annuity 113
 5.4.4 Term immediate annuity 114
5.5 Annuities payable continuously 115
 5.5.1 Whole life continuous annuity 115
 5.5.2 Term continuous annuity 117
5.6 Annuities payable \(m \) times per year 118
 5.6.1 Introduction 118
 5.6.2 Life annuities payable \(m \) times a year 119
 5.6.3 Term annuities payable \(m \) times a year 120
5.7 Comparison of annuities by payment frequency 121
5.8 Deferred annuities 123
5.9 Guaranteed annuities 125
5.10 Increasing annuities 127
 5.10.1 Arithmetically increasing annuities 127
 5.10.2 Geometrically increasing annuities 129
5.11 Evaluating annuity functions 130
 5.11.1 Recursions 130
 5.11.2 Applying the UDD assumption 131
 5.11.3 Woolhouse’s formula 132
5.12 Numerical illustrations 135
5.13 Functions for select lives 136
5.14 Notes and further reading 137
5.15 Exercises 137

6 Premium calculation 142
6.1 Summary 142
6.2 Preliminaries 142
6.3 Assumptions 143
6.4 The present value of future loss random variable 145
6.5 The equivalence principle 146
 6.5.1 Net premiums 146
6.6 Gross premium calculation 150
6.7 Profit 154
6.8 The portfolio percentile premium principle 162
6.9 Extra risks 165
 6.9.1 Age rating 165
 6.9.2 Constant addition to \(\mu_x \) 165
 6.9.3 Constant multiple of mortality rates 167
Contents

6.10 Notes and further reading 169
6.11 Exercises 170

7 Policy values 176
 7.1 Summary 176
 7.2 Assumptions 176
 7.3 Policies with annual cash flows 176
 7.3.1 The future loss random variable 176
 7.3.2 Policy values for policies with annual cash flows 182
 7.3.3 Recursive formulae for policy values 191
 7.3.4 Annual profit 196
 7.3.5 Asset shares 200
 7.4 Policy values for policies with cash flows at discrete intervals other than annually 203
 7.4.1 Recursions 204
 7.4.2 Valuation between premium dates 205
 7.5 Policy values with continuous cash flows 207
 7.5.1 Thiele’s differential equation 207
 7.5.2 Numerical solution of Thiele’s differential equation 211
 7.6 Policy alterations 213
 7.7 Retrospective policy value 219
 7.8 Negative policy values 220
 7.9 Notes and further reading 220
 7.10 Exercises 220

8 Multiple state models 230
 8.1 Summary 230
 8.2 Examples of multiple state models 230
 8.2.1 The alive–dead model 230
 8.2.2 Term insurance with increased benefit on accidental death 232
 8.2.3 The permanent disability model 232
 8.2.4 The disability income insurance model 233
 8.2.5 The joint life and last survivor model 234
 8.3 Assumptions and notation 235
 8.4 Formulae for probabilities 239
 8.4.1 Kolmogorov’s forward equations 242
 8.5 Numerical evaluation of probabilities 243
 8.6 Premiums 247
 8.7 Policy values and Thiele’s differential equation 250
 8.7.1 The disability income model 251
 8.7.2 Thiele’s differential equation – the general case 255
Contents

8.8 Multiple decrement models 256
8.9 Joint life and last survivor benefits 261
 8.9.1 The model and assumptions 261
 8.9.2 Joint life and last survivor probabilities 262
 8.9.3 Joint life and last survivor annuity and insurance functions 264
 8.9.4 An important special case: independent survival models 270
8.10 Transitions at specified ages 274
8.11 Notes and further reading 278
8.12 Exercises 279

9 Pension mathematics 290
 9.1 Summary 290
 9.2 Introduction 290
 9.3 The salary scale function 291
 9.4 Setting the DC contribution 294
 9.5 The service table 297
 9.6 Valuation of benefits 306
 9.6.1 Final salary plans 306
 9.6.2 Career average earnings plans 312
 9.7 Funding plans 314
 9.8 Notes and further reading 319
 9.9 Exercises 319

10 Interest rate risk 326
 10.1 Summary 326
 10.2 The yield curve 326
 10.3 Valuation of insurances and life annuities 330
 10.3.1 Replicating the cash flows of a traditional non-participating product 332
 10.4 Diversifiable and non-diversifiable risk 334
 10.4.1 Diversifiable mortality risk 335
 10.4.2 Non-diversifiable risk 336
 10.5 Monte Carlo simulation 342
 10.6 Notes and further reading 348
 10.7 Exercises 348

11 Emerging costs for traditional life insurance 353
 11.1 Summary 353
 11.2 Profit testing for traditional life insurance 353
 11.2.1 The net cash flows for a policy 353
 11.2.2 Reserves 355
 11.3 Profit measures 358
 11.4 A further example of a profit test 360
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Notes and further reading</td>
<td>369</td>
</tr>
<tr>
<td>11.6</td>
<td>Exercises</td>
<td>369</td>
</tr>
<tr>
<td>12</td>
<td>Emerging costs for equity-linked insurance</td>
<td>374</td>
</tr>
<tr>
<td>12.1</td>
<td>Summary</td>
<td>374</td>
</tr>
<tr>
<td>12.2</td>
<td>Equity-linked insurance</td>
<td>374</td>
</tr>
<tr>
<td>12.3</td>
<td>Deterministic profit testing for equity-linked insurance</td>
<td>375</td>
</tr>
<tr>
<td>12.4</td>
<td>Stochastic profit testing</td>
<td>384</td>
</tr>
<tr>
<td>12.5</td>
<td>Stochastic pricing</td>
<td>388</td>
</tr>
<tr>
<td>12.6</td>
<td>Stochastic reserving</td>
<td>390</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Reserving for policies with non-diversifiable risk</td>
<td>390</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Quantile reserving</td>
<td>391</td>
</tr>
<tr>
<td>12.6.3</td>
<td>CTE reserving</td>
<td>393</td>
</tr>
<tr>
<td>12.6.4</td>
<td>Comments on reserving</td>
<td>394</td>
</tr>
<tr>
<td>12.7</td>
<td>Notes and further reading</td>
<td>395</td>
</tr>
<tr>
<td>12.8</td>
<td>Exercises</td>
<td>395</td>
</tr>
<tr>
<td>13</td>
<td>Option pricing</td>
<td>401</td>
</tr>
<tr>
<td>13.1</td>
<td>Summary</td>
<td>401</td>
</tr>
<tr>
<td>13.2</td>
<td>Introduction</td>
<td>401</td>
</tr>
<tr>
<td>13.3</td>
<td>The ‘no arbitrage’ assumption</td>
<td>402</td>
</tr>
<tr>
<td>13.4</td>
<td>Options</td>
<td>403</td>
</tr>
<tr>
<td>13.5</td>
<td>The binomial option pricing model</td>
<td>405</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Assumptions</td>
<td>405</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Pricing over a single time period</td>
<td>405</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Pricing over two time periods</td>
<td>410</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Summary of the binomial model option pricing technique</td>
<td>413</td>
</tr>
<tr>
<td>13.6</td>
<td>The Black–Scholes–Merton model</td>
<td>414</td>
</tr>
<tr>
<td>13.6.1</td>
<td>The model</td>
<td>414</td>
</tr>
<tr>
<td>13.6.2</td>
<td>The Black–Scholes–Merton option pricing formula</td>
<td>416</td>
</tr>
<tr>
<td>13.7</td>
<td>Notes and further reading</td>
<td>427</td>
</tr>
<tr>
<td>13.8</td>
<td>Exercises</td>
<td>428</td>
</tr>
<tr>
<td>14</td>
<td>Embedded options</td>
<td>431</td>
</tr>
<tr>
<td>14.1</td>
<td>Summary</td>
<td>431</td>
</tr>
<tr>
<td>14.2</td>
<td>Introduction</td>
<td>431</td>
</tr>
<tr>
<td>14.3</td>
<td>Guaranteed minimum maturity benefit</td>
<td>433</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Pricing</td>
<td>433</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Reserving</td>
<td>436</td>
</tr>
<tr>
<td>14.4</td>
<td>Guaranteed minimum death benefit</td>
<td>438</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Pricing</td>
<td>438</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Reserving</td>
<td>440</td>
</tr>
</tbody>
</table>
Contents xiii

14.5 Pricing methods for embedded options 444
14.6 Risk management 447
14.7 Emerging costs 449
14.8 Notes and further reading 457
14.9 Exercises 458

A Probability theory 464
A.1 Probability distributions 464
 A.1.1 Binomial distribution 464
 A.1.2 Uniform distribution 464
 A.1.3 Normal distribution 465
 A.1.4 Lognormal distribution 466
A.2 The central limit theorem 469
A.3 Functions of a random variable 469
 A.3.1 Discrete random variables 470
 A.3.2 Continuous random variables 470
 A.3.3 Mixed random variables 471
A.4 Conditional expectation and conditional variance 472
A.5 Notes and further reading 473

B Numerical techniques 474
B.1 Numerical integration 474
 B.1.1 The trapezium rule 474
 B.1.2 Repeated Simpson’s rule 476
 B.1.3 Integrals over an infinite interval 477
B.2 Woolhouse’s formula 478
B.3 Notes and further reading 479

C Simulation 480
C.1 The inverse transform method 480
C.2 Simulation from a normal distribution 481
 C.2.1 The Box–Muller method 482
 C.2.2 The polar method 482
C.3 Notes and further reading 482

References 483
Author index 487
Index 488
Life insurance has undergone enormous change in the last two to three decades. New and innovative products have been developed at the same time as we have seen vast increases in computational power. In addition, the field of finance has experienced a revolution in the development of a mathematical theory of options and financial guarantees, first pioneered in the work of Black, Scholes and Merton, and actuaries have come to realize the importance of that work to risk management in actuarial contexts.

Given the changes occurring in the interconnected worlds of finance and life insurance, we believe that this is a good time to recast the mathematics of life contingent risk to be better adapted to the products, science and technology that are relevant to current and future actuaries.

In this book we have developed the theory to measure and manage risks that are contingent on demographic experience as well as on financial variables. The material is presented with a certain level of mathematical rigour; we intend for readers to understand the principles involved, rather than to memorize methods or formulae. The reason is that a rigorous approach will prove more useful in the long run than a short-term utilitarian outlook, as theory can be adapted to changing products and technology in ways that techniques, without scientific support, cannot.

We start from a traditional approach, and then develop a more contemporary perspective. The first seven chapters set the context for the material, and cover traditional actuarial models and theory of life contingencies, with modern computational techniques integrated throughout, and with an emphasis on the practical context for the survival models and valuation methods presented. Through the focus on realistic contracts and assumptions, we aim to foster a general business awareness in the life insurance context, at the same time as we develop the mathematical tools for risk management in that context.
In Chapter 8 we introduce multiple state models, which generalize the life–death contingency structure of previous chapters. Using multiple state models allows a single framework for a wide range of insurance, including benefits which depend on health status, on cause of death benefits, or on two or more lives.

In Chapter 9 we apply the theory developed in the earlier chapters to problems involving pension benefits. Pension mathematics has some specialized concepts, particularly in funding principles, but in general this chapter is an application of the theory in the preceding chapters.

In Chapter 10 we move to a more sophisticated view of interest rate models and interest rate risk. In this chapter we explore the crucially important difference between diversifiable and non-diversifiable risk. Investment risk represents a source of non-diversifiable risk, and in this chapter we show how we can reduce the risk by matching cash flows from assets and liabilities.

In Chapter 11 we continue the cash flow approach, developing the emerging cash flows for traditional insurance products. One of the liberating aspects of the computer revolution for actuaries is that we are no longer required to summarize complex benefits in a single actuarial value; we can go much further in projecting the cash flows to see how and when surplus will emerge. This is much richer information that the actuary can use to assess profitability and to better manage portfolio assets and liabilities.

In Chapter 12 we repeat the emerging cash flow approach, but here we look at equity-linked contracts, where a financial guarantee is commonly part of the contingent benefit. The real risks for such products can only be assessed taking the random variation in potential outcomes into consideration, and we demonstrate this with Monte Carlo simulation of the emerging cash flows.

The products that are explored in Chapter 12 contain financial guarantees embedded in the life contingent benefits. Option theory is the mathematics of valuation and risk management of financial guarantees. In Chapter 13 we introduce the fundamental assumptions and results of option theory.

In Chapter 14 we apply option theory to the embedded options of financial guarantees in insurance products. The theory can be used for pricing and for determining appropriate reserves, as well as for assessing profitability.

The material in this book is designed for undergraduate and graduate programmes in actuarial science, and for those self-studying for professional actuarial exams. Students should have sufficient background in probability to be able to calculate moments of functions of one or two random variables, and to handle conditional expectations and variances. We also assume familiarity with the binomial, uniform, exponential, normal and lognormal distributions. Some of the more important results are reviewed in Appendix A. We also assume
that readers have completed an introductory level course in the mathematics of finance, and are aware of the actuarial notation for annuities-certain.

Throughout, we have opted to use examples that liberally call on spreadsheet-style software. Spreadsheets are ubiquitous tools in actuarial practice, and it is natural to use them throughout, allowing us to use more realistic examples, rather than having to simplify for the sake of mathematical tractability. Other software could be used equally effectively, but spreadsheets represent a fairly universal language that is easily accessible. To keep the computation requirements reasonable, we have ensured that every example and exercise can be completed in Microsoft Excel, without needing any VBA code or macros. Readers who have sufficient familiarity to write their own code may find more efficient solutions than those that we have presented, but our principle was that no reader should need to know more than the basic Excel functions and applications. It will be very useful for anyone working through the material of this book to construct their own spreadsheet tables as they work through the first seven chapters, to generate mortality and actuarial functions for a range of mortality models and interest rates. In the worked examples in the text, we have worked with greater accuracy than we record, so there will be some differences from rounding when working with intermediate figures.

One of the advantages of spreadsheets is the ease of implementation of numerical integration algorithms. We assume that students are aware of the principles of numerical integration, and we give some of the most useful algorithms in Appendix B.

The material in this book is appropriate for two one-semester courses. The first seven chapters form a fairly traditional basis, and would reasonably constitute a first course. Chapters 8–14 introduce more contemporary material. Chapter 13 may be omitted by readers who have studied an introductory course covering pricing and delta hedging in a Black–Scholes–Merton model. Chapter 9, on pension mathematics, is not required for subsequent chapters, and could be omitted if a single focus on life insurance is preferred.

Acknowledgements

Many of our students and colleagues have made valuable comments on earlier drafts of parts of the book. Particular thanks go to Carole Bernard, Phelim Boyle, Johnny Li, Ana Maria Mera, Kok Keng Siaw and Matthew Till.

The authors gratefully acknowledge the contribution of the Departments of Statistics and Actuarial Science, University of Waterloo, and Actuarial Mathematics and Statistics, Heriot-Watt University, in welcoming the non-resident
Preface

authors for short visits to work on this book. These visits significantly shortened the time it has taken to write the book (to only one year beyond the original deadline).

David Dickson
University of Melbourne

Mary Hardy
University of Waterloo

Howard Waters
Heriot-Watt University