Quantum Theory of Materials

This accessible new text introduces the theoretical concepts and tools essential for graduate-level courses on the physics of materials in condensed matter physics, physical chemistry, materials science and engineering, and chemical engineering.

Topics covered range from fundamentals such as crystal periodicity and symmetry, and derivation of single-particle equations, to modern additions including graphene, twodimensional solids, carbon nanotubes, topological states, and Hall physics. Advanced topics such as phonon interactions with phonons, photons, and electrons, and magnetism, are presented in an accessible way, and a set of appendices reviewing crucial fundamental physics and mathematical tools makes this text suitable for students from a range of backgrounds.

Students will benefit from the emphasis on translating theory into practice, with worked examples explaining experimental observations, applications illustrating how theoretical concepts can be applied to real research problems, and 242 informative full-color illustrations. End-of-chapter problems are included for homework and self-study, with solutions and lecture slides for instructors available online.

Efthimios Kaxiras is the John Hasbrouck Van Vleck Professor of Pure and Applied Physics at Harvard University. He holds joint appointments in the Department of Physics and the School of Engineering and Applied Sciences, and is an affiliate of the Department of Chemistry and Chemical Biology. He is the Founding Director of the Institute for Applied Computational Science, a Fellow of the American Physical Society, and a Chartered Physicist and Fellow of the Institute of Physics, London.

John D. Joannopoulos is the Francis Wright Davis Professor of Physics at MIT, where he is Director of the Institute for Soldier Nanotechnologies. He is a member of the National Academy of Sciences and American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science, a Fellow of the American Physical Society, and a Fellow of the World Technology Network. His awards include the MIT School of Science Graduate Teaching Award (1991), the William Buechner Teaching Prize of the MIT Department of Physics (1996), the David Adler Award (1997) and Aneesur Rahman Prize (2015) of the American Physical Society, and the Max Born Award of the Optical Society of America.

Quantum Theory of Materials

EFTHIMIOS KAXIRAS Harvard University

JOHN D. JOANNOPOULOS

Massachusetts Institute of Technology

Cambridge University Press 978-0-521-11711-1 — Quantum Theory of Materials Efthimios Kaxiras , John D. Joannopoulos Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521117111 DOI: 10.1017/9781139030809

© Efthimios Kaxiras and John D. Joannopoulos 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in Singapore by Markono Print Media Pte Ltd

A catalogue record for this publication is available from the British Library.

ISBN 978-0-521-11711-1 Hardback

Additional resources for this publication at www.cambridge.org/9780521117111

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Li	st of l	Figures	page x						
Li	st of I	Tables	xviii						
Pı	reface		xxi						
Ac	cknow	ledgments	xxiii						
1	1 From Atoms to Solids								
	1.1	Electronic Structure of Atoms	2						
	1.2	Forming Bonds Between Atoms	5						
		1.2.1 The Essence of Metallic Bonding: The Free-Electron Model	6						
		1.2.2 The Essence of Covalent Bonding	10						
		1.2.3 Other Types of Bonding in Solids	14						
	1.3	The Architecture of Crystals	15						
		1.3.1 Atoms with No Valence Electrons	16						
		1.3.2 Atoms with <i>s</i> Valence Electrons	21						
		1.3.3 Atoms with <i>s</i> and <i>p</i> Valence Electrons	23						
		1.3.4 Atoms with <i>s</i> and <i>d</i> Valence Electrons	32						
		1.3.5 Atoms with s , d , and f Valence Electrons	33						
		1.3.6 Solids with Two Types of Atoms	33						
		1.3.7 Hydrogen: A Special One-s-Valence-Electron Atom	37						
		1.3.8 Solids with More Than Two Types of Atoms	39						
	1.4	Bonding in Solids	41						
	Fur	ther Reading	45						
	Pro	blems	46						
2	Elec	trons in Crystals: Translational Periodicity	52						
	2.1	Translational Periodicity: Bloch States	52						
	2.2	Reciprocal Space: Brillouin Zones	59						
		2.2.1 Nature of Wave-Vector k	59						
		2.2.2 Brillouin Zones and Bragg Planes	60						
		2.2.3 Periodicity in Reciprocal Space	65						
		2.2.4 Symmetries Beyond Translational Periodicity	66						
	2.3	The Free-Electron and Nearly Free-Electron Models	69						
	2.4	Effective Mass, " k · p " Perturbation Theory	75						
	2.5	The Tight-Binding Approximation	76						
		2.5.1 Generalizations of the TBA	96						
	2.6	2.6 General Band-Structure Methods							

V

vi	Contents	
	2.6.1 Crystal Pseudopotentials	103
	2.7 Localized Wannier Functions	105
	2.8 Density of States	107
	2.8.1 Free-Electron Density of States	110
	2.8.2 Local Density of States	111
	2.8.3 Crystal DOS: Van Hove Singularities	112
	Further Reading	115
	Problems	116
	3 Symmetries Beyond Translational Periodicity	119
	3.1 Time-Reversal Symmetry for Spinless Fermions	119
	3.2 Crystal Groups: Definitions	121
	3.3 Symmetries of 3D Crystals	124
	3.4 Symmetries of the Band Structure	129
	3.5 Application: Special k-Points	135
	3.6 Group Representations	137
	3.7 Application: The N-V-Center in Diamond	155
	Further Reading	159
	Problems	159
	4 From Many Particles to the Single-Particle Picture	161
	4.1 The Hamiltonian of the Solid	162
	4.1.1 Born–Oppenheimer Approximation	163
	4.2 The Hydrogen Molecule	166
	4.3 The Hartree and Hartree–Fock Approximations	173
	4.3.1 The Hartree Approximation	173
	4.3.2 The Hartree–Fock Approximation	176
	4.4 Hartree–Fock Theory of Free Electrons	178
	4.5 Density Functional Theory	182
	4.5.1 Thomas–Fermi–Dirac Theory	182
	4.5.2 General Formulation of DFT	183
	4.5.3 Single-Particle Equations in DFT	186
	4.5.4 The Exchange–Correlation Term in DFT	189
	4.5.5 Time-Dependent DFT	193
	4.6 Quasiparticles and Collective Excitations	195
	4.7 Screening: The Thomas–Fermi Model	197
	4.8 Quasiparticle Energies: GW Approximation	199
	4.9 The Pseudopotential	202
	4.10 Energetics and Ion Dynamics	208
	4.10.1 The Total Energy	208
	4.10.2 Forces and Ion Dynamics	218
	Further Reading	221
	Problems	222

vii	Contents			
5	Electronic Properties of Crystals	2.		
	5.1 Band Structure of Idealized 1D Solids	2		
	5.1.1 A Finite "1D Solid": Benzene	2		
	5.1.2 An Infinite "1D Solid": Polyacetylene	2		
	5.2 2D Solids: Graphene and Beyond	2		
	5.2.1 Carbon Nanotubes	2		
	5.3 3D Metallic Solids	2		
	5.4 3D Ionic and Covalent Solids	2		
	5.5 Doping of Ideal Crystals	2		
	5.5.1 Envelope Function Approximation	2		
	5.5.2 Effect of Doping in Semiconductors	2		
	5.5.3 The p-n Junction	2		
	5.5.4 Metal–Semiconductor Junction	2		
	Further Reading	2		
	Problems	2		
6	Electronic Excitations	2		
	6.1 Optical Excitations	2		
	6.2 Conductivity and Dielectric Function	2		
	6.2.1 General Formulation	2		
	6.2.2 Drude and Lorentz Models	2		
	6.2.3 Connection to Microscopic Features	2		
	6.2.4 Implications for Crystals	2		
	6.2.5 Application: Optical Properties of Metals and Semiconductors	2		
	6.3 Excitons	3		
	6.3.1 General Considerations	3		
	6.3.2 Strongly Bound (Frenkel) Excitons	3		
	6.3.3 Weakly Bound (Wannier) Excitons	3		
	Further Reading	3		
	Problems	3		
7	Lattice Vibrations and Deformations	3		
	7.1 Lattice Vibrations: Phonon Modes	3		
	7.2 The Born Force-Constant Model	3		
	7.3 Applications of the Force-Constant Model	3		
	7.4 Phonons as Harmonic Oscillators	3		
	7.5 Application: Specific Heat of Crystals	3		
	7.5.1 The Classical Picture	3		
	7.5.2 The Quantum-Mechanical Picture	3		
	7.5.3 The Debye Model	3		
	7.5.4 Thermal Expansion Coefficient	3		
	7.6 Application: Mössbauer Effect	3		
	7.7 Elastic Deformations of Solids	3		

viii		Contents	
		7.7.1 Phenomenological Models of Solid Deformation	35
		7.7.2 Elasticity Theory: The Strain and Stress Tensors	35
		7.7.3 Strain Energy Density	36
		7.7.4 Isotropic Solid	36
		7.7.5 Solid with Cubic Symmetry	36
		7.7.6 Thin Plate Equilibrium	36
		7.8 Application: Phonons of Graphene	37
		Further Reading	37
		Problems	37
	8	Phonon Interactions	37
		8.1 Phonon Scattering Processes	37
		8.1.1 Scattering Formalism	38
		8.2 Application: The Debye–Waller Factor	38
		8.3 Phonon–Photon Interactions	38
		8.3.1 Infrared Absorption	38
		8.3.2 Raman Scattering	39
		8.4 Phonon–Electron Interactions: Superconductivity	39
		8.4.1 BCS Theory of Superconductivity	39
		8.4.2 The McMillan Formula for T_c	41
		8.4.3 High-Temperature Superconductors	41
		Further Reading	41
		Problems	41
	9	Dynamics and Topological Constraints	41
		9.1 Electrons in External Electromagnetic Fields	41
		9.1.1 Classical Hall Effect	41
		9.1.2 Landau Levels	42
		9.1.3 Quantum Hall Effect	42
		9.1.4 de Haas–van Alphen Effect	43
		9.2 Dynamics of Crystal Electrons: Single-Band Picture	43
		9.3 Time-Reversal Invariance	43
		9.3.1 Kramers Degeneracy	44
		9.4 Berry's Phase	44
		9.4.1 General Formulation	44
		9.4.2 Berry's Phase for Electrons in Crystals	44
		9.5 Applications of Berry's Phase	45
		9.5.1 Aharonov–Bohm Effect	45
		9.5.2 Polarization of Crystals	45
		9.5.3 Crystal Electrons in Uniform Electric Field	45
		9.6 Chern Numbers	45
		9.7 Broken Symmetry and Edge States	46
		9.7.1 Broken Symmetry in Honeycomb Lattice	46
		9.7.2 Edge States of Honeycomb Lattice	46
		9.8 Topological Constraints	46

ix	Contents			
	Further Reading	476		
	Problems	476		
	10 Magnetic Behavior of Solids	480		
	10.1 Overview of Magnetic Behavior of Insulators	481		
	10.2 Overview of Magnetic Behavior of Metals	486		
	10.2.1 Free Fermions in Magnetic Field: Pauli Paramagnetism	487		
	10.2.2 Magnetization in Hartree–Fock Free-Electron Model	490		
	10.2.3 Magnetization of Band Electrons	493		
	10.3 Classical Spins: Simple Models on a Lattice	497		
	10.3.1 Non-interacting Spins on a Lattice: Negative Temperature	497		
	10.3.2 Interacting Spins on a Lattice: Ising Model	502		
	10.4 Quantum Spins: Heisenberg Model	509		
	10.4.1 Motivation of the Heisenberg Model	510		
	10.4.2 Ground State of Heisenberg Ferromagnet	514		
	10.4.3 Spin Waves in Heisenberg Ferromagnet	516		
	10.4.4 Heisenberg Antiferromagnetic Spin Model	520		
	10.5 Magnetic Domains	522		
	Further Reading	525		
	Problems	525		
	Appendices	529		
	Appendix A Mathematical Tools	531		
	Appendix B Classical Electrodynamics	549		
	Appendix C Quantum Mechanics	565		
	Appendix D Thermodynamics and Statistical Mechanics	610		
	Index	646		

List of Figures

1.1	Different forms of carbon-based solids	page 2
1.2	Filling of electronic shells for the elements in the Periodic Table with atomic	
	numbers $Z = 1-18$	3
1.3	Filling of electronic shells for elements with atomic numbers $Z = 19-36$	4
1.4	Periodic behavior of the properties of the elements	4
1.5	Schematic representation of the core and valence electrons in an atom	5
1.6	Illustration of metallic bonding between many atoms	6
1.7	A simple 1D model of the energy levels associated with the free-electron	
	model for a system of six "atoms"	9
1.8	Schematic representation of the formation of a bond between two atoms with	L
	one valence electron each	10
1.9	Symmetric (+), left panel, and antisymmetric (-), right panel, linear	
	combinations of single-particle orbitals	12
1.10	Illustration of covalent bonding between many atoms	14
1.11	Shapes of the unit cells in some lattices that appear in the Periodic Table	16
1.12	Illustration of the face centered cubic (FCC) crystal structure	17
1.13	Illustration of the hexagonal close packed (HCP) crystal structure	20
1.14	Illustration of two interpenetrating FCC or HCP lattices	20
1.15	Three different views of the regular icosahedron	21
1.16	Illustration of the body centered cubic (BCC) crystal structure	22
1.17	Representation of the character of s, p, d atomic orbitals	23
1.18	Illustration of covalent bonding in a single plane of graphite, called	
	"graphene"	25
1.19	Illustration of atomic arrangement in graphite in a top view (left) and a	
	perspective view (right)	27
1.20	The structure of the C_{60} molecule or "buckyball" (left) and of carbon	
	nanotubes (right)	27
1.21	Illustration of covalent bonding in the diamond lattice	29
1.22	The diamond crystal	30
1.23	The structure of the diamond lattice as revealed by the transmission electron	
	microscope	30
1.24	Typical layer structures that group-V elements form	31
1.25	Illustration of cubic crystals formed by ionic solids	34
1.26	The zincblende lattice in which every atom is surrounded by four neighbors	
	of the opposite type	34

х

xi	_	List of Figures	
	1.27	Example of an ionic-covalent amorphous structure, the silicon-dioxide glass	35
	1.28	Illustration of the atomic and electronic structure of a layered transition-metal	
		dichalcogenide crystal, molybdenum disulfide	36
	1.29	Illustration of hydrogen bonding between water molecules in ice	38
	1.30	Illustration of the structure and bonding in perovskite crystals	40
	1.31	The three effective potentials discussed in the text, Lennard–Jones, Morse,	
		and harmonic oscillator	44
	2.1	The 2D crystals defined in Table 2.1	54
	2.2	The 3D crystals defined in Table 2.1	54
	2.3	Energy bands in crystals	59
	2.4	Illustration of boundaries in reciprocal space that bisect the reciprocal lattice	
		vectors $\pm \mathbf{b}_1, \pm \mathbf{b}_2, \pm \mathbf{b}_3$ for a cubic lattice	61
	2.5	Schematic representation of Bragg scattering from atoms on successive	
		atomic planes	62
	2.6	Illustration of the construction of Brillouin zones in a 2D crystal	64
	2.7	The first six Brillouin zones of the 2D square lattice	64
	2.8	The shape of occupied portions of the various Brillouin zones for the 2D	
		square lattice with $Z = 4$ electrons per unit cell	65
	2.9	Symmetries of the 2D square in reciprocal space	68
	2.10	Symmetries of the 2D hexagon in reciprocal space	69
	2.11	Energy bands of the free-electron and nearly free-electron models in one dimension	70
	2.12	Free electron bands in the 3D FCC lattice and comparison to the bands of the aluminum crystal	72
	2.13	The band structure for the 2D free-electron model along the high-symmetry lines in the IBZ	74
	2 14	Bloch states in the tight-binding approximation for a 1D model	80
	2.14	Single-particle energy eigenvalues $\epsilon^{(s)}$ and $\epsilon^{(p)}$ in the first BZ for the 1D	00
	2.15	infinite chain model, with one atom per unit cell and one orbital per atom in	
		the TBA with nearest-neighbor interactions	82
	2 16	Single-particle energy eigenvalues $\epsilon^{(+)}$ and $\epsilon^{(-)}$ in the first BZ for the 1D	02
	2.10	infinite chain model, with one atom per unit cell that has one s orbital and one	
		<i>n</i> orbital in the TBA with nearest-neighbor interactions	83
	2 17	(I eff) The 2D square lattice with atoms that possess s orbitals and n orbitals	05
	2.17	(Right) The corresponding BZ with the irreducible part shaded	85
	2 18	The TBA band structure of the 2D square lattice with parameters from	05
	2.10	Table 2.3	87
	2 10	(Left) The square lattice with a two-atom basis (Right) The corresponding	07
	2.17	first BZ with the irreducible part shaded	91
	2 20	Bands of the two-atom unit cell with n_1 is orbitals in one of the atoms and a	91
	2.20	bands of the two-atom unit cell with p_x, p_y of ordars in one of the atoms and a d_x , p_y orbitals in one of the atom in the 2D square lattice	03
	2 21	$u_{x^2-y^2}$ or other in the other atom, in the 2D square lattice with a two atom basis.	93
	2,21	which have a d orbital on one site and p_1 , p_2 orbitals on the other	04
		which have a <i>a</i> of ortal on one site and p_x, p_y of offals on the other	94

xii		List of Figures	
	2.22	The graphene lattice and π bands	95
	2.23	The landscape of the π bands in the 2D honevcomb lattice with a two-atom	
	2.24	basis and a p_z -like orbital at each site (Left) Two p orbitals at arbitrary directions θ_1, θ_2 relative to the line that joins	96
		their centers. (Right) An <i>s</i> orbital and a <i>p</i> orbital at an angle θ relative to the line that joins their centers	97
	2.25	(Left) Illustration of the Wigner–Seitz cell for a 2D hexagonal lattice. (Right)	2,
		Illustration of the muffin-tin potential	101
	2.26	Illustration of the calculation of the density of states	108
	2.27	Illustration of the simple model for tunneling between a metal (left side) and a semiconductor (right side)	109
	2.28	Illustration of the behavior of the density of states as a function of the energy ϵ , in the free-electron model in three, two, and one dimensions	111
	2.29	The behavior of DOS, $g(\epsilon)$, near critical points of different type in three	
		dimensions	115
	3.1	(Left) The symmetry operations of the 2D honeycomb lattice with a basis of	110
	011	two different atoms. (Right) The irreducible Brillouin zone for the 2D	
		honevcomb lattice with C_{3v} symmetry	123
	3.2	The conventional unit cells of the 14 Bravais lattices in the six systems in	120
	5.2	three dimensions	125
	33	Illustration of symmetry axes of the tetrahedron and the octahedron	126
	3.4	Stereograms for 30 point groups in three dimensions	127
	3 5	Symmetry operations of the cube	129
	3.6	(Left) The symmetry operations of the 2D square lattice (Right) The	12)
	510	irreducible Brillouin zone for the 2D square lattice with C ₄ , symmetry	134
	3.7	(Left) The Brillouin zone and its irreducible part of the 2D square lattice.	10.
	017	(Right) The energy bands of the square lattice with $s_{1}p_{1}$ orbitals on each	
		site	153
	3.8	Structure and symmetries of the N-V-center in diamond	156
	3.9	Illustration of the occupation of states in the $N-V^-$ -center	158
	4.1	Schematic representation of the hydrogen wavefunctions for isolated atoms	100
		and the linear combinations that preserve the inversion symmetry with respect	
		to the center of the molecule	168
	4.2	Energy ϵ_k of single-particle states as a function of momentum $k/k_{\rm E}$ for two	100
		different values of $r_c = 1.2$	180
	43	(Left) The charge density of valence electrons in the silicon crystal within the	100
	1.5	conventional cubic cell (Right) A conventional ball-and-stick representation	
		of the diamond structure of bulk Si	193
	44	The original Coulomb potential and the total (screened) potential	200
	4 5	Schematic illustration of typical calculated energy eigenvalues for fictitious	200
	1.5	particles in the DFT/LDA approach and in the GW approach	202
	46	Flectron density as a function of radial distance from the nucleus for four	202
	1.0	elements: C Si Ge and Ph	203
			205

xiii	_	List of Figures	
	4.7	Schematic representation of the construction of the atomic	
		pseudo-wavefunction $\tilde{\phi}(r)$ and the atomic pseudopotential $\tilde{\mathcal{V}}^{\text{ion}}(r)$	206
	4.8 5.1	Total energy as a function of volume for various crystal phases of silicon (Top row): The structure of benzene, C_6H_6 . (Bottom row) The electronic density on a plane through the C and H atoms (left), and on a plane situated	217
		0.5 Å above the atoms (right)	228
	5.2	Interpretation of orbitals in benzene, C ₆ H ₆ , as "Bloch" states	229
	5.3	Energy levels of benzene represented as a band structure	230
	5.4	(Top row) Illustration of the structure of trans-polyacetylene, $[-C_2H_2-]_n$. (Bottom row) The total charge density obtained from DFT calculations for the two models	232
	5.5	(Left) Energy bands of polyacetylene, $[-C_2H_2-]_n$, and density of states (far left). (Right) Wavefunctions of polyacetylene shown as linear combinations	232
		of p_z orbitals	232
	5.6	Band structure of symmetric (left) and asymmetric (right) models of	
		polyacetylene, obtained from DFT calculations	234
	5.7	Schematic illustration of the soliton motion in polyacetylene	235
	5.8	Band structure of graphene, as obtained from DFT calculations	236
	5.9	Valence electron charge density plots for graphene, on the plane of the atoms (left) and on a plane perpendicular to it	237
	5.10	Density of states of representative 2D crystals: graphene (top), a semimetal and BN (bottom), an insulator	238
	5.11	Density of states of representative 2D crystals: silicene (top), a structure similar to graphene but consisting of Si atoms, a semimetal and MoS ₂ (bottom), a semiconductor, representative of the metal-dichalcogenide family of layered solids	239
	5.12	(Top) A graphene sheet with the ideal lattice vectors denoted as $\mathbf{a}_1, \mathbf{a}_2$. (Bottom) Perspective views of the (7, 7) armchair tube, the (8, 4) chiral tube,	
		and the $(7, 0)$ zigzag tube, along their axes	240
	5.13	(a) The graphene Brillouin zone, with reciprocal lattice vectors \mathbf{b}_1 , \mathbf{b}_2 and tube-related vectors \mathbf{b}_3 , \mathbf{b}_4 . (b) The folding of the full zone into the reduced zone, determined by the vectors $\pm \mathbf{b}_3$, $\pm \mathbf{b}_4$. (c) The Brillouin zone for $(n, 0)$ tubes, and the example of the (6, 0) tube. (d) The Brillouin zone for (n, n)	
		tubes, and the example of the $(4, 4)$ tube	242
	5.14	Examples of CNT band structures obtained with the tight-binding	
		approximation	243
	5.15	Band structure of four metals, Al, Cu, Ag, Au, all in the FCC structure, along high-symmetry directions of the BZ shown in Fig. 2.12	245
	5.16	Band structure of three metals, V, Cr, Fe, all in the BCC structure, along high-symmetry directions in the BZ	246
	5 17	National symmetry directions in the DL Valence electron charge density plots on the (100) plane of the hulk (ECC)	240
	5.17	crystal structure for two metallic solids: Al (left) and Ag (right)	246

xiv	List of Figures	
5.	8 Density of states of representative 3D metallic crystals: a simple,	
	free-electron metal, Al (top) and a noble, d-electron metal, Au (bottom)	247
5.	9 Band structure of two ionic insulators, LiF and NaCl (both in rocksalt	
	structure), a partially ionic/partially covalent insulator, BN (zincblende	
	structure), and a covalently bonded insulator, C (diamond structure)	249
5.	20 Band structure of representative semiconductors: Si and Ge in the diamond	
	structure; AlP, GaAs, SiC, and ZnS, all in the zincblende structure	251
5.	21 Valence electron charge density plots on the (110) plane of the bulk diamond	
	or zincblende crystal structure for representative solids	252
5.	22 Density of states of representative 3D semiconducting crystals	254
5.	23 (Left) Schematic illustration of light and heavy electron and hole states.	
	(Right) Schematic illustration of shallow donor and acceptor impurity states	
	in a semiconductor with direct gap	257
5.	24 Phosphorus dopant state in bulk silicon	263
5.	25 Schematic representation of p-n junction elements	266
5.	26 Band bending associated with a p-n junction	267
5.	27 Origin of the intrinsic potential in the p–n junction	267
5.	28 Schematic representation of the operation of a photovoltaic device (PVD)	
	(left panel), a light-emitting diode (LED) (middle panel), and the effect of	
	forward and reverse bias (middle and right panels, respectively), based on the	
	p–n junction	268
5.	29 Illustration of band bending in p-n junctions	269
5.	30 The basic features of a MOSFET	272
5.	Band alignment in metal-semiconductor junction	274
5.	Band alignment in metal-oxide-semiconductor junction	276
5.	33 Illustration of the structure of cis-polyacetylene, $[-C_4H_4-]_n$, in the two	
	possible arrangements of the singe/double bond sequence along	
	nearest-neighbor C atoms	277
6.	The absorption spectrum of benzene, C_6H_6 , as a function of the excitation	
	energy, obtained using TD-DFT	283
6.	2 Illustration of the general behavior of the real and imaginary parts of the	
	dielectric function	288
6.	Example of the behavior of the real and imaginary parts of the dielectric	
	function for Al, a representative free-electron-like solid	289
6.	Examples of the behavior of the real part of the dielectric function for Cu	
	(top) and Ag (bottom)	290
6.	5 Representative examples of the interband contributions to the dielectric	
	function (real and imaginary parts, respectively) for semiconductors (Si, Ge,	
	AlP, GaAs) and insulators (C, SiC), obtained from the band structures	
	calculated by DFT methods	297
6.	Examples of the behavior of the real and imaginary parts of the dielectric	
	function for Cu (top) and Ag (bottom)	300
6.	7 The dielectric function of Si (top) and Ge (bottom), real and imaginary parts	302

xv		List of Figures	
	6.0		
	6.8	(Left) Modification of the absorption spectrum in the presence of excitons	
		relative to the spectrum in the absence of excitons. (Right) Schematic	
		the gap corresponding to electron, hale bound states	204
	60	Comparison of Coulomb interaction contributions for excitonic states with the	504
	0.9	particle and hole situated in the same unit cell (left panel) and in different unit	
		cells a distance R anart (right nanel)	311
	6.10	(Left) Excitons in Cu ₂ O. (Right) Schematic illustration of the wavefunction	511
		of an <i>s</i> -state of the exciton	316
	7.1	The origin of the bond-bending term in the force-constant model	326
	7.2	Bond stretching and bond bending in the force-constant model	326
	7.3	Illustration of the 1D chain with lattice constant <i>a</i> and one atom of mass <i>M</i>	
		per unit cell	330
	7.4	The atomic displacements corresponding to phonon modes in the 1D chain	
		with one atom per unit cell	331
	7.5	Illustration of the 1D chain with lattice constant <i>a</i> and two atoms per unit cell	332
	7.6	(Top) Definition of the model of the periodic chain in 2D, with lattice	
		constant \mathbf{a}_1 and two atoms per unit cell. (Bottom) The atomic displacements	
		of the phonon modes for the periodic chain with lattice constant \mathbf{a}_1 and two	
		atoms per unit cell	334
	7.7	The 2D square lattice with lattice constants $\mathbf{a}_1, \mathbf{a}_2$, with one atom per unit cell	336
	7.8	(Top) The frequencies of the phonon modes of the 2D square lattice along	
		different high-symmetry directions of the BZ. (Bottom) Atomic displacements $f(t) = 1 + \frac{1}{2} + \frac{1}{2}$	227
	7.0	of the phonon modes with frequencies marked as (a), (b), (c) and (d)	33/
	7.9	(10p) The phonon spectrum of St along high-symmetry directions, calculated within the force constant model (Rottom) Atomic displacements associated	
		within the phonon modes in Si at the Γ and X points in the BZ	330
	7 10	(I eff) Behavior of the specific heat c as a function of temperature T in the	559
	/.10	Debye model (Right) Comparison of the density of states in the Debye model	347
	7.11	Fit of calculated total energies of various elemental solids to the universal	517
		binding energy relation	356
	7.12	Definition of the strain tensor for the cartesian coordinate system	357
	7.13	Definition of the stress tensor for the cartesian coordinate system	359
	7.14	The Born force-constant model for graphene	372
	7.15	The phonon spectrum of the honeycomb lattice (graphene) in 3D space	374
	8.1	Diagrams for the one and two-phonon scattering processes	384
	8.2	Illustration of excitations involved in Rayleigh, Stokes and anti-Stokes	
		scattering, and infrared absorption	388
	8.3	Illustration of excitations involved in Raman scattering processes	391
	8.4	Illustration of attractive effective interaction between two electrons mediated	
	. ·	by phonons	395
	8.5	Scattering between electrons of initial and final wave-vectors through the	46 -
	0.6	exchange of a phonon	405
	8.6	Features of the BCS model	408

xvi	_	List of Figures	
	07	Examples of the structure of high T compounds	414
	0./ 0.1	Examples of the structure of high- I_c compounds The confining potential energies and wavefunctions of the two lowest states	414
	9.1	at an insulator, semiconductor junction	/18
	92	Geometry of the 2D electrons in the Hall effect	410
	93	Schematic representation of experimental measurements in the Hall effect	422
	9.4	Loop geometry for establishing the quantum Hall effect	424
	9.5	(Left) The energy levels of states in the ribbon as a function of the position of their centers. (Right) The density of states for the states that include edge	420
	0.6	Schematic representation of classical orbits of changed marticles, in the bulk	428
	9.0	and at the edges of a ribbon on the x, y plane	429
	9.7	Density of states and filling of Landau levels, including the effects of	
		disorder, at different values of the magnetic field <i>B</i>	430
	9.8	Illustration of the de Haas–van Alphen effect in a 2D electron gas	433
	9.9	The Fermi surface of Au	433
	9.10	Single-particle energy eigenvalues for the simple example that illustrates the motion of electrons and holes in a one-band, 1D crystal	437
	9.11	The position vector \mathbf{r} appearing in the field of the Dirac monopole M situated at the origin, to illustrate the calculation of Berry's phase in a system with two	
	9.12	independent variables, the polar angle ϑ and the azimuthal angle φ (Left) The honeycomb lattice with the primitive lattice vectors $\mathbf{a}_1, \mathbf{a}_2$ and the primitive unit cell. (Right) The corresponding band structure, in solid lines,	445
		along the high-symmetry directions of the BZ	449
	9.13	Brillouin zone of the 2D honeycomb lattice, with the high-symmetry points identified	451
	9.14	Illustration of Aharonov–Bohm effect description in terms of Berry's phase	455
	9.15	Illustration of the ambiguity in determining the dipole moment \mathbf{p} in the unit cell of a 1D erystel with period <i>a</i>	157
	0.16	(I aff) The band structure of a single layer of MoS ₂ (Right) The calculated	ч <i>у</i> /
	9.10	Berry curvature for the highest valence hand	460
	917	The first Brillouin zone of the 2D square lattice	462
	9.18	Honeycomb lattice with broken time-reversal symmetry	464
	9.19	The structure of ribbons with armchair (left panel) and zigzag (right panel)	161
	9.20	(a) The BZ of the original honeycomb lattice. (b) How sections are displaced by the reciprocal lattice vectors to be mapped into a new first BZ (c) The	400
		armchair-edged ribbon BZ. (d) The zigzag-edged ribbon BZ	467
	9.21	Energy bands of ribbons cut from the 2D honeycomb lattice with armchair (left) or zigzag (right) edges	467
	9.22	Energy bands for zigzag-edged ribbons of the honeycomb lattice, with broken symmetry	468
	9.23	Illustration of the analogy between the genus g of a surface and the topological or Chern invariant N for a hand structure	470
		opological of Chern invariant iv for a band structure	770

xvii		List of Figures	
	9.24	Illustration of the behavior of edge states in the case of different values of the	
		topological invariant	471
	9.25	(Left) A 2D model square lattice with two atoms per unit cell. (Right) The corresponding energy bands	472
	9 26	The four energy bands of the 3D cubic lattice model with two atoms per unit	172
	2.20	cell having an <i>s</i> -like (even parity) and a <i>p</i> -like (odd parity) orbital	474
	10.1	The total energy multiplied by a factor of 10 and the magnetization m of the polarized electron gas, as functions of r_s	493
	10.2	Illustration of the occupation of spin-up electron states and spin-down	
		electron states, with corresponding Fermi levels	494
	10.3	The entropy per dipole and inverse temperature for the model of dipoles in an	
		external magnetic field	500
	10.4	The average magnetization M as a function of temperature for the Ising model	504
	10.5	Graphical solution of Eq. (10.33)	507
	10.6	The free energy per particle as a function of the average magnetization per	
		particle, for various values of T/T_c	508
	10.7	The three terms in the effective second-order hamiltonian obtained from the	
		Hubbard model in the limit $U \gg t$	513
	10.8	Illustration of a spin wave in the 2D square lattice with $\mathbf{k} = (\frac{1}{6}, \frac{1}{6})\frac{\pi}{a}$, where a	
		is the lattice constant	519
	10.9	Illustration of the Néel state on a 2D square lattice	521
	10.10	O Illustration of magnetic domains in a ferromagnet	524
	10.11	l Hysteresis curve of the magnetization M in a ferromagnet upon application of	
		an external field H	525
	A.1	(Left) The δ -function as represented by a normalized gaussian, Eq. (A.55).	
		(Right) The ϑ -function as represented by Eq. (A.60)	540
	C.1	Illustration of the oscillatory and decaying exponential nature of the	
		wavefunction in regions where the potential energy is lower than or higher	
		than the total energy	568
	C.2	The transmission coefficient of a square barrier for an incident quantum	
		mechanical particle	569
	C.3	The lowest six eigenfunctions of the 1D harmonic oscillator potential	580
	C.4	Contours of constant value for representative p , d , and f orbitals	583
	C.5	The lowest six radial eigenfunctions of the Coulomb potential for the	
		hydrogen atom	584
	D.1	The Maxwell construction	619
	D.2	Isotherms on the $P-V$ plane (left plot) and phase boundaries between the	
		solid, liquid, and gas phases on the $P-T$ plane (right plot)	621
	D.3	Average occupation numbers in the Maxwell-Boltzmann, Fermi-Dirac, and	
		Bose–Einstein distributions	627
	D.4	Effective interaction potential for a pair of bosons or fermions	641

List of Tables

1.1	The linear combinations of <i>s</i> and <i>p</i> atomic orbitals that form the sp^2 hybrids	26
1.2	for the two atoms per unit cell in the graphite structure The linear combinations of a and a stornic orbitals that form the $an3$ hybridge	page 26
1.2	fine linear combinations of s and p atomic orbitals that form the sp ² hybrids	20
1 2	For the two atoms per unit cell in the diamond structure	28
1.3	Parameters for the Lennard–Jones potential for noble gases	42
1.4	Comparison of the three effective potentials, Lennard–Jones $V_{LJ}(r)$, Morse	42
0.1	$V_{\rm M}(r)$, and narmonic oscillator $V_{\rm HO}(r)$	42
2.1	Examples of 2D and 3D crystals	53
2.2	Matrix elements for the 2D square lattice with s, p_x, p_y, p_z orbitals at	
	high-symmetry points	88
2.3	Values of the on-site and hopping matrix elements for the band structure of	
	the 2D square lattice with an orthogonal s and p basis and nearest-neighbor	
	interactions	89
2.4	Symbols, multiplicity, type, and characteristic behavior of the coefficients	
	α_i , $i = 1, 2, 3$ along the principal axes for critical points in $d = 3$ dimensions	113
3.1	Symmetry operations and group multiplication table for symmetries of the	
	$C_{3\nu}$ group	123
3.2	The seven crystal systems and the associated 32 point groups for crystals in	
	three dimensions	124
3.3	The 24 symmetry operations of the cube that involve rotations by π , $\pi/3$,	
	$\pi/2$, and 2π	128
3.4	Group multiplication table for symmetries of the 2D square lattice	134
3.5	Class multiplication table for the $C_{3\nu}$ group	145
3.6	Character table for the irreducible representations of the $C_{3\nu}$ group	146
3.7	Character table for the irreducible representations of the $C_{4\nu}$ group	150
3.8	Character tables for the irreducible representations corresponding to the X	
	and Δ high-symmetry points of the 2D square lattice	153
4.1	Correlation energy functionals and exchange-correlation potentials in variou	IS
	models	191
5.1	Structural and electronic properties of common metals, grouped according to)
	crystal structure and the type of valence electrons	248
5.2	Structural and electronic properties of common semiconductors, grouped	
	according to the type of elements that form the crystal	255
5.3	Effective masses at the CBM and VBM of representative elemental (Si and	
	Ge) and compound semiconductors (GaAs)	262
		= - =

xviii

xix		List of Tables	
	6.1	Plasma frequencies for various metal and semiconductor crystals	301
	6.2	Examples of Frenkel excitons in ionic solids and Mott–Wannier excitons in semiconductors	304
	6.3	Spin configurations for a particle–particle pair and a particle–hole pair for $spin-1/2$ particles	306
	7.1	Frequencies of four high-symmetry phonon modes in Si, at the center (Γ) and the boundary (X) of the Brillouin zone, obtained by theoretical calculations	500
		and experimental measurements	340
	7.2	Debye temperatures and frequencies for several elemental solids	348
	7.3	Values of the shear modulus, Lamé's constant, and Poisson's ratio for representative covalent and ionic solids (left column) and metals (right	
		column)	365
	7.4	Bulk moduli and elastic constants for representative cubic crystals at room	370
	75	Dynamical matrix for graphane in the Born force constant model including	570
	1.5	contributions from first nearest neighbors only	373
	8.1	Critical temperature, critical field, and Debye frequency of elemental	
		conventional superconductors	393
	8.2	Critical temperature of representative high-temperature superconductors	413
	10.1	Total spin <i>S</i> , orbital angular momentum <i>L</i> , and total angular momentum <i>J</i> numbers for the $l = 2$ (<i>d</i> shell) and $l = 3$ (<i>f</i> shell) as they are being filled by <i>n</i>	
		electrons	483
	10.2	Examples of elemental and compound ferromagnets and antiferromagnets	523
	C.1	The lowest six eigenfunctions of the 1D harmonic oscillator potential	579
	C.2	The spherical harmonics $Y_{lm}(\theta, \phi)$ for $l = 0, 1, 2, 3$ along with the <i>x</i> , <i>y</i> , <i>z</i> representation of the linear combinations for given <i>l</i> and $ m $ and the	
		identification of those representations as s, p, d, f orbitals	582
	C.3	The radial wavefunctions for $n = 1, 2, 3$ and the associated Laguerre	
		polynomials used in their definition	585

Preface

Why do various materials behave the way they do? For instance, what makes a material behave like a good insulator, instead of being a good conductor or a semiconductor? What determines the strength of a material? How can we account for the color of different solids? Questions like these have attracted curious minds for centuries. Materials, after all, are of central importance to humanity: they define the stage of civilization, as in "Stone Age," "Bronze Age," "Iron Age," and the current "Silicon Age." The scientific study of the properties of materials in the last two centuries has produced a body of knowledge referred to as the "physics of materials" that goes a long way toward explaining and even *predicting* their properties from first-principles theoretical concepts. Our book aims to present these concepts in a concise and accessible manner.

The book emerged as the result of many years of teaching this subject at Harvard and MIT. The intended audience is graduate or advanced undergraduate students in physics, applied physics, materials science, chemistry, and related engineering and applied science fields. There are classic textbooks on the subject, the venerable work by N. W. Ashcroft and N. D. Mermin, Solid State Physics, being a standard example; there are also numerous more recent works, for instance Fundamentals of Condensed Matter Physics by M. L. Cohen and S. G. Louie, a work of great depth and clarity, and the delightfully intuitive *Physics of Solids* by E. N. Economou. We mention most of these books as suggestions for further reading at the end of each chapter, as appropriate. Taken together, these sources quite nicely cover all important aspects of the subject. The present work aims to fill a gap in the literature, by providing a single book that covers all the essential topics, including recent advances, at a level that can be accessible to a wider audience than the typical graduate student in condensed matter physics. This is what prompted us to use the word "materials" (rather than "solids" or "condensed matter") in the title of the book. Consistent with this aim, we have included topics beyond the standard fare, like elasticity theory and group theory, that hopefully cover the needs, and address the interests, of this wider community of readers.

To facilitate accessibility, we have intentionally kept the mathematical formalism at the simplest possible level, for example, avoiding second quantization notation except when it proved absolutely necessary (the discussion of the BCS model for superconductivity, Chapter 8). Instead, we tried to emphasize physical concepts and supply all the information needed to motivate how they translate into specific expressions that relate physical quantities to experimental measurements.

The book concentrates on theoretical concepts and tools, developed during the last few decades to understand the properties of materials. As such, we did not undertake an

ххі

Cambridge University Press 978-0-521-11711-1 — Quantum Theory of Materials Efthimios Kaxiras , John D. Joannopoulos Frontmatter <u>More Information</u>

xxii

Preface

extensive survey of experimental data. Rather, we compare the results of the theoretical models to key experimental findings throughout the book. We also give examples of how the theory can be applied to explain what experiment observes, as well as several compilations of experimental data to capture the range of behavior encountered in various types of materials.

The book can be used to teach a one-semester graduate-level course (approximately 40 hours of lecture time) on the physics of materials. For an audience with strong physics and math background and some previous exposure to solid-state physics, this can be accomplished by devoting an introductory lecture to Chapter 1, and covering the contents of Chapters 2–7 thoroughly. Topics from Chapters 8, 9, and 10 can then be covered as time permits and the instructor's interest dictates. An alternative approach, emphasizing more the applications of the theory and aimed at an audience with no prior exposure to solid-state physics, is to cover thoroughly Chapters 1 and 2, skip Chapter 3, cover Sections 4.1–4.7, Chapters 5 and 6, Sections 7.1–7.5, Sections 8.3 and 8.4, and selected topics from Chapters 9 and 10 as time permits.

Many examples and applications are carefully worked out in the text, illustrating how the theoretical concepts and tools can be applied to simple and more sophisticated models. Not all of these need to be presented in lectures; in fact, the reason for giving their detailed solutions was to make it possible for the student to follow them on their own, reserving lecture time for discussions of key ideas and derivations. We have also included several problems at the end of each chapter and we strongly encourage the interested student to work through them in detail, as this is the only meaningful way of mastering the subject.

Finally, we have included an extensive set of appendices, covering basic mathematical tools and elements from classical electrodynamics, quantum mechanics, and thermodynamics and statistical mechanics. The purpose of these appendices is to serve as a reference for material that students may have seen in a different context or at a different level, so that they can easily refresh their memory of it, or become familiar with the level required for understanding the discussion in the main text, without having to search a different source.

Acknowledgments

When trying to explain something, it is often difficult to keep track of how your own understanding of the ideas was formed. Acknowledging all the sources of inspiration and insight can therefore be an impossible task, but some of these sources definitely stand out.

We wish to thank our teacher and mentor Marvin Cohen as an especially important influence on our thinking and understanding of physics. EK wishes to express a deep debt of gratitude to his teachers at various stages of his career, John Joannopoulos, Kosal Pandey, and Lefteris Economou, all of whom served as role models and shaped his thinking. Many colleagues have played an equally important role, including Bert Halperin, David Nelson, Nihat Berker, and Stratos Manousakis.

The students who patiently followed several iterations of the manuscript, helping to improve it in ways big and small, are the ultimate reason for putting a vast collection of hand-written notes into a coherent text – we thank them sincerely, and hope they benefitted from the experience. Some of them put an extraordinary amount of energy and care into writing solutions to the problems at the end of the chapters, for which we are thankful. The most recent and careful compilation was made by Cedric Flamant, who also corrected some problem statements and several inaccuracies in the text – he deserves special thanks. Daniel Larson read Chapter 9 very carefully, and provided much useful feedback and suggestions for improving the presentation. We also thank Eugene Mele for many useful comments on the physics of topological states.

Last but not least, we wish to acknowledge the essential, or more appropriately, existential role that our partners Eleni and Kyriaki played in this endeavor; they have put up with innumerable hours of distraction while we were working out some idea to include in the book. Without their support and patience, the book would simply not exist; we gratefully dedicate it to them.

xxiii