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7.3 Values of the shear modulus, Lamé’s constant, and Poisson’s ratio for

representative covalent and ionic solids (left column) and metals (right

column) 365

7.4 Bulk moduli and elastic constants for representative cubic crystals at room

temperature 370

7.5 Dynamical matrix for graphene in the Born force-constant model, including

contributions from first nearest neighbors only 373

8.1 Critical temperature, critical field, and Debye frequency of elemental

conventional superconductors 393

8.2 Critical temperature of representative high-temperature superconductors 413

10.1 Total spin S, orbital angular momentum L, and total angular momentum J

numbers for the l = 2 (d shell) and l = 3 (f shell) as they are being filled by n

electrons 483

10.2 Examples of elemental and compound ferromagnets and antiferromagnets 523

C.1 The lowest six eigenfunctions of the 1D harmonic oscillator potential 579

C.2 The spherical harmonics Ylm(θ , φ) for l = 0, 1, 2, 3 along with the x, y, z

representation of the linear combinations for given l and |m| and the

identification of those representations as s, p, d, f orbitals 582

C.3 The radial wavefunctions for n = 1, 2, 3 and the associated Laguerre

polynomials used in their definition 585

www.cambridge.org/9780521117111
www.cambridge.org


Cambridge University Press
978-0-521-11711-1 — Quantum Theory of Materials
Efthimios Kaxiras , John D. Joannopoulos 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9780521117111
www.cambridge.org


Cambridge University Press
978-0-521-11711-1 — Quantum Theory of Materials
Efthimios Kaxiras , John D. Joannopoulos 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

Why do various materials behave the way they do? For instance, what makes a material

behave like a good insulator, instead of being a good conductor or a semiconductor? What

determines the strength of a material? How can we account for the color of different solids?

Questions like these have attracted curious minds for centuries. Materials, after all, are of

central importance to humanity: they define the stage of civilization, as in “Stone Age,”

“Bronze Age,” “Iron Age,” and the current “Silicon Age.” The scientific study of the

properties of materials in the last two centuries has produced a body of knowledge referred

to as the “physics of materials” that goes a long way toward explaining and even predicting

their properties from first-principles theoretical concepts. Our book aims to present these

concepts in a concise and accessible manner.

The book emerged as the result of many years of teaching this subject at Harvard and

MIT. The intended audience is graduate or advanced undergraduate students in physics,

applied physics, materials science, chemistry, and related engineering and applied science

fields. There are classic textbooks on the subject, the venerable work by N. W. Ashcroft

and N. D. Mermin, Solid State Physics, being a standard example; there are also numerous

more recent works, for instance Fundamentals of Condensed Matter Physics by M. L.

Cohen and S. G. Louie, a work of great depth and clarity, and the delightfully intuitive

Physics of Solids by E. N. Economou. We mention most of these books as suggestions for

further reading at the end of each chapter, as appropriate. Taken together, these sources

quite nicely cover all important aspects of the subject. The present work aims to fill a gap

in the literature, by providing a single book that covers all the essential topics, including

recent advances, at a level that can be accessible to a wider audience than the typical

graduate student in condensed matter physics. This is what prompted us to use the word

“materials” (rather than “solids” or “condensed matter”) in the title of the book. Consistent

with this aim, we have included topics beyond the standard fare, like elasticity theory

and group theory, that hopefully cover the needs, and address the interests, of this wider

community of readers.

To facilitate accessibility, we have intentionally kept the mathematical formalism at the

simplest possible level, for example, avoiding second quantization notation except when

it proved absolutely necessary (the discussion of the BCS model for superconductivity,

Chapter 8). Instead, we tried to emphasize physical concepts and supply all the information

needed to motivate how they translate into specific expressions that relate physical

quantities to experimental measurements.

The book concentrates on theoretical concepts and tools, developed during the last

few decades to understand the properties of materials. As such, we did not undertake an

xxi
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xxii Preface

extensive survey of experimental data. Rather, we compare the results of the theoretical

models to key experimental findings throughout the book. We also give examples of

how the theory can be applied to explain what experiment observes, as well as several

compilations of experimental data to capture the range of behavior encountered in various

types of materials.

The book can be used to teach a one-semester graduate-level course (approximately 40

hours of lecture time) on the physics of materials. For an audience with strong physics

and math background and some previous exposure to solid-state physics, this can be

accomplished by devoting an introductory lecture to Chapter 1, and covering the contents

of Chapters 2–7 thoroughly. Topics from Chapters 8, 9, and 10 can then be covered as time

permits and the instructor’s interest dictates. An alternative approach, emphasizing more

the applications of the theory and aimed at an audience with no prior exposure to solid-

state physics, is to cover thoroughly Chapters 1 and 2, skip Chapter 3, cover Sections 4.1–

4.7, Chapters 5 and 6, Sections 7.1–7.5, Sections 8.3 and 8.4, and selected topics from

Chapters 9 and 10 as time permits.

Many examples and applications are carefully worked out in the text, illustrating how

the theoretical concepts and tools can be applied to simple and more sophisticated models.

Not all of these need to be presented in lectures; in fact, the reason for giving their detailed

solutions was to make it possible for the student to follow them on their own, reserving

lecture time for discussions of key ideas and derivations. We have also included several

problems at the end of each chapter and we strongly encourage the interested student to

work through them in detail, as this is the only meaningful way of mastering the subject.

Finally, we have included an extensive set of appendices, covering basic mathematical

tools and elements from classical electrodynamics, quantum mechanics, and thermody-

namics and statistical mechanics. The purpose of these appendices is to serve as a reference

for material that students may have seen in a different context or at a different level, so that

they can easily refresh their memory of it, or become familiar with the level required for

understanding the discussion in the main text, without having to search a different source.
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