CONTENTS

Preface xiii

1 Archaeological prospecting 1
 1.1 Why prospecting? 1
 1.2 Methods 2
 1.3 Aims 3
 1.4 The archaeological site as a physical phenomenon 4
 1.4.1 The buried structure 4
 Notes 7

2 Soils and the effects of climate on prospecting 9
 2.1 Introduction 9
 2.2 Macroscopic characteristics 9
 2.2.1 Granulometric analysis 10
 2.2.2 Soil differences in detectable archaeological features 12
 2.2.3 Soil water 14
 2.2.4 Ions in the soil 18
 2.2.5 Parameters defining the state of a soil 18
 2.3 The electrical conductivity of soils 19
 2.3.1 Dielectric permittivity of soils 20
 2.4 Thermal properties of soils 22
 Notes 25

3 Aerial photography 26
 3.1 Introduction 26
 3.2 The appearance of archaeological sites from the air 28
 3.2.1 The high viewpoint 28
 3.2.2 The targets (‘signals’) 30
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 ‘Noise’</td>
<td>30</td>
</tr>
<tr>
<td>3.2.4 Aims in archaeological aerial photography</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Crawford’s site classification</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Shadow sites</td>
<td>33</td>
</tr>
<tr>
<td>3.3.2 Soil sites</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3 Moisture markings</td>
<td>46</td>
</tr>
<tr>
<td>3.3.4 Frost and snow marks</td>
<td>48</td>
</tr>
<tr>
<td>3.3.5 The crop site</td>
<td>50</td>
</tr>
<tr>
<td>3.3.6 Soil water balance</td>
<td>58</td>
</tr>
<tr>
<td>3.3.7 Kinds of soil and their effects</td>
<td>74</td>
</tr>
<tr>
<td>3.3.8 Spectral properties of vegetation</td>
<td>75</td>
</tr>
<tr>
<td>3.4 Cameras and films</td>
<td>77</td>
</tr>
<tr>
<td>3.4.1 Historical note</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2 Lenses and filters</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Photographic film as a detector and information carrier</td>
<td>88</td>
</tr>
<tr>
<td>3.5.1 Introduction</td>
<td>88</td>
</tr>
<tr>
<td>3.5.2 Physics, chemistry and engineering of films</td>
<td>89</td>
</tr>
<tr>
<td>3.5.3 Density and exposure</td>
<td>92</td>
</tr>
<tr>
<td>3.5.4 Colour</td>
<td>105</td>
</tr>
<tr>
<td>3.5.5 Image structure</td>
<td>112</td>
</tr>
<tr>
<td>3.5.6 Dimensional stability of negatives and prints</td>
<td>116</td>
</tr>
<tr>
<td>3.5.7 Archive quality</td>
<td>119</td>
</tr>
<tr>
<td>Notes</td>
<td>122</td>
</tr>
</tbody>
</table>

4 Archaeological image enhancement 126

4.1 Introduction 126

4.1.1 Images as information records 126

4.1.2 Some photographic preliminaries 128

4.2 The image as numerical data 132

4.2.1 Getting a picture into the computer 132

4.2.2 The digitised picture 143

4.2.3 Picture output: displays, film writers 145

4.2.4 Software 149

4.3 Elementary statistical properties of images 150

4.4 Mathematics of image analysis 153

4.4.1 Representation by means of orthogonal functions 153

4.4.2 The point spread function 156

4.4.3 Filtering 161

4.5 Enhancement of archaeological images 162

4.5.1 Correction of errors of exposure and development 162

4.5.2 Problems with image sharpness 177

4.5.3 Faults due to handling and storage 190
Contents

4.5.4 Converting grayscale pictures to drawings (edge extraction) 194
4.5.5 Enhancement methods for colour pictures 197

4.6 Some practical considerations in picture processing 199
4.6.1 Computational feasibility of enhancement methods 199
4.6.2 Order of operations on pictures 202
4.6.3 Storage reduction 203
4.6.4 History of treatment 203

Notes 204

5 Geometric transformation of archaeological aerial photographs and mapping 207
5.1 Introduction 207
5.2 The image as a projection 208
5.2.1 Perspective 208
5.2.2 Maps 209
5.2.3 Transformation of sites from photographs to maps or orthophotos 209

5.3 Mathematics of picture geometry 210
5.3.1 Scanned image rectification 210
5.3.2 A mathematical model of projection in a camera 215
5.3.3 The collinearity equations 217
5.3.4 Simple methods for transposing points from a single image to a map 218
5.3.5 Optical rectification of oblique images 222
5.3.6 Computer methods for single images 224
5.3.7 An example of rectification in hilly terrain with different methods 238
5.3.8 Computer methods for multiple images 242
5.3.9 Solution of the non-linear equation systems 257
5.3.10 Determination of ground coordinates for a point in two images 268

5.4 Errors 271
5.4.1 Sources of error 271
5.4.2 Numerically unfavourable cases 274
5.4.3 Comparison of the methods with regard to error 276

5.5 Ground height 276
5.5.1 Computing a digital terrain model 276
5.5.2 Other terrain models 279

5.6 Digital photomosaics 280

5.7 Miscellaneous practical recipes 287
5.7.1 Control point methods 287
5.7.2 Hand tracing of archaeological features 287
5.7.3 Trade-offs between scanning and computation times 288
Contents

5.8 Maps and picture processing 288
 5.8.1 Map availability and scales 288
 5.8.2 Processing scanned maps 289
 5.8.3 Map storage reduction through coding 293

5.9 Incorporating non-pictorial information in images 298
 5.9.1 Storing and finding political boundaries and place names 298
 5.9.2 The geographic data header 299
 5.9.3 Scanned symbols and fonts 300

5.10 Fortran function for rapid determination of presence of a coordinate point inside or outside a polygon 300

Notes 303

6 Resistivity prospecting 307

6.1 Electric currents and soil resistivity 307
 6.1.1 Theoretical introduction 307
 6.1.2 Properties of quadripoles 312
 6.1.3 Organisation of measurement technique for profiles and mapping 324
 6.1.4 Electrical sounding and interpretation of stratification 327

6.2 Practical aspects of electrical prospecting 335
 6.2.1 Speed of measurement 335
 6.2.2 Measuring instruments 336
 6.2.3 Electrode systems 339
 6.2.4 Automation of the measurement technique and the data treatment 342

6.3 Problems in electrical prospecting 345
 6.3.1 Instrumental errors 346
 6.3.2 Parasitic electrical phenomena 348
 6.3.3 Topographic and surface effects 349
 6.3.4 Resistivity paradoxes 350
 6.3.5 Climatic effects 350
 6.3.6 Superposition of superficial and deep anomalies 358

6.4 Structures of different types 359
 6.4.1 Conductive structures 359
 6.4.2 Resistive structures 362
 6.4.3 Unusual structures and unconventional procedures 368

6.5 History of the application of resistivity methods 371

Notes 372

7 Magnetic properties of soils 375

7.1 Introduction 375

7.2 Some magnetic preliminaries 375
 7.2.1 Magnets and magnetic fields 375
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2 Kinds of magnetism</td>
<td>378</td>
</tr>
<tr>
<td>7.2.3 Dilution factor</td>
<td>383</td>
</tr>
<tr>
<td>7.2.4 Parent material</td>
<td>384</td>
</tr>
<tr>
<td>7.2.5 Estimates of dilution factors</td>
<td>384</td>
</tr>
<tr>
<td>7.3 Soil magnetism research</td>
<td>384</td>
</tr>
<tr>
<td>7.4 Minerals with magnetic properties in soils</td>
<td>386</td>
</tr>
<tr>
<td>7.4.1 Magnetite</td>
<td>388</td>
</tr>
<tr>
<td>7.4.2 Maghaemite</td>
<td>388</td>
</tr>
<tr>
<td>7.4.3 Haematite</td>
<td>390</td>
</tr>
<tr>
<td>7.4.4 Grain size effects</td>
<td>391</td>
</tr>
<tr>
<td>7.4.5 Time dependence</td>
<td>393</td>
</tr>
<tr>
<td>7.4.6 Dilution effects and field dependence of viscosity</td>
<td>395</td>
</tr>
<tr>
<td>7.5 Depth dependence of magnetic properties: the Le Borgne effect</td>
<td>397</td>
</tr>
<tr>
<td>7.5.1 Soil heating to determine fractional conversion</td>
<td>398</td>
</tr>
<tr>
<td>7.6 Measurement of the magnetic properties of soils</td>
<td>401</td>
</tr>
<tr>
<td>7.6.1 Sample taking and preparation</td>
<td>402</td>
</tr>
<tr>
<td>7.6.2 Measurement of susceptibility and viscosity</td>
<td>406</td>
</tr>
<tr>
<td>7.7 Conclusion</td>
<td>419</td>
</tr>
<tr>
<td>Notes</td>
<td>419</td>
</tr>
<tr>
<td>8 Magnetic prospecting</td>
<td>422</td>
</tr>
<tr>
<td>8.1 Prediction of magnetic anomalies</td>
<td>422</td>
</tr>
<tr>
<td>8.1.1 Introduction</td>
<td>422</td>
</tr>
<tr>
<td>8.1.2 Calculation of the anomaly due to objects of arbitrary shape</td>
<td>423</td>
</tr>
<tr>
<td>8.1.3 Feature shapes and the perturbed field</td>
<td>435</td>
</tr>
<tr>
<td>8.1.4 Soil noise and other sources of disturbance</td>
<td>440</td>
</tr>
<tr>
<td>8.2 Magnetometers</td>
<td>450</td>
</tr>
<tr>
<td>8.2.1 Introduction</td>
<td>450</td>
</tr>
<tr>
<td>8.2.2 The free precision proton magnetometer</td>
<td>450</td>
</tr>
<tr>
<td>8.2.3 The fluxgate gradiometer</td>
<td>456</td>
</tr>
<tr>
<td>8.2.4 The optically pumped magnetometer</td>
<td>461</td>
</tr>
<tr>
<td>8.2.5 Electron spin resonance devices (Overhauser–Abraqam effect)</td>
<td>466</td>
</tr>
<tr>
<td>8.3 Some practical considerations for magnetic measurements</td>
<td>470</td>
</tr>
<tr>
<td>8.3.1 Use of absolute, differential and gradient magnetometers</td>
<td>470</td>
</tr>
<tr>
<td>8.3.2 Position control</td>
<td>478</td>
</tr>
<tr>
<td>8.3.3 Data recording</td>
<td>484</td>
</tr>
<tr>
<td>8.4 Treatment and display of archaeological magnetic data</td>
<td>488</td>
</tr>
<tr>
<td>8.4.1 Complexity of archaeological features</td>
<td>488</td>
</tr>
<tr>
<td>8.4.2 Numerical range and accuracy of data</td>
<td>490</td>
</tr>
<tr>
<td>8.4.3 Spatial frequency content</td>
<td>490</td>
</tr>
<tr>
<td>8.4.4 Quantity of data for adequate sampling and site size</td>
<td>491</td>
</tr>
</tbody>
</table>
Contents

8.5 Treatment of magnetic data prior to display 491
 8.5.1 Flagging and replacing missing data 491
 8.5.2 Linear filtering 492
 8.5.3 Reduction to the pole 493
8.6 Data display techniques 495
 8.6.1 Contour plots 495
 8.6.2 Overprinting or symbol plots 495
 8.6.3 Dot density plots 496
 8.6.4 Isometric line traces 498
8.7 Treatment of archaeological magnetic data as images 500
 8.7.1 Hardware requirements 500
 8.7.2 Techniques of enlargement 501
 8.7.3 Techniques of data range compression 504
 8.7.4 Compression by linear transformation 506
 8.7.5 Mean/standard deviation normalisation 506
 8.7.6 Median/interquartile difference normalisation 506
 8.7.7 Operations on the data after picture transformation 506
8.8 Historical note: The development of magnetic prospecting in archaeology 513
 Notes 516

9 Electromagnetic prospecting 520
9.1 Definition and general concepts 520
 9.1.1 Skin depth at low frequencies and sounding techniques 522
 9.1.2 Types of sources or signals utilised at low frequencies 523
9.2 Research into applications of low frequencies in archaeology 525
9.3 Utilisation of sources at a great distance 526
 9.3.1 Surface fields in a homogeneous soil created by a distant transmitter 526
 9.3.2 The case of a two- or three-dimensional buried structure 526
 9.3.3 The SGD method 531
 9.3.4 The magneto-telluric method 541
9.4 Utilisation of magnetic dipoles: the Slingram method 541
 9.4.1 The response of a homogeneous soil in the presence of a magnetic dipole 541
 9.4.2 The case of a buried structure 546
 9.4.3 Defining optical characteristics of a prospecting device 547
 9.4.4 Examples of the use of the method 551
 9.4.5 Interest and limits of the Slingram method 562
9.5 Emission of pulse signals 566
 9.5.1 Measurement principles 566
 9.5.2 Utilisation of pulsed transmission 568
Contents

9.6 Detection of metal objects
 9.6.1 General principles 570
 9.6.2 Detection of metal objects and archaeological prospection 571
9.7 Soil radar 575
 9.7.1 The dielectric permittivity of soils and the attenuation factor 576
 9.7.2 Methods of measurement and interpretation of results 578
 9.7.3 Examples of soil radar surveys 580
 9.7.4 Airborne radar 585
9.8 Appendix: The finite element method 586
Notes 588

10 Thermal prospecting
10.1 Introduction 591
10.2 Soil temperature 593
 10.2.1 Surface temperature, temperature profile and temporal change 593
 10.2.2 Surface energy balance 596
 10.2.3 Heat flow in the ground 597
10.3 Thermal anomalies and choice of favourable measurement time for bare soil 601
 10.3.1 Effects due to microrelief 601
 10.3.2 Effects due to inhomogeneous subsoil 601
 10.3.3 Choice of the optimal measurement time 609
10.4 Use of a scanning radiometer 609
 10.4.1 Radiometric measurement of temperature 609
 10.4.2 The scanning radiometer 611
 10.4.3 The ARIES radiometer 614
10.5 Examples of thermal prospecting on bare soils 618
 10.5.1 Localised structures 619
 10.5.2 Old field boundaries 623
10.6 Thermal anomalies from vegetation 630
 10.6.1 A site at Villeneuve La Guyard (Yonne) 631
 10.6.2 A site at Maisy (Aisne) 631
Notes 633
Index 636