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Power Series in Fifteenth-Century Kerala

1.1 Preliminary Remarks

The Indian astronomer and mathematician Madhava (c. 1340–c. 1425) discovered
infinite power series about two and a half centuries before Newton rediscovered them
in the 1660s. Madhava’s work may have been motivated by his studies in astronomy,
since he concentrated mainly on the trigonometric functions. There appears to be no
connection between Madhava’s school and that of Newton and other European math-
ematicians. In spite of this, the Keralese and European mathematicians shared some
similar methods and results. Both were fascinated with transformation of series, though
here they used very different methods.

The mathematician-astronomers of medieval Kerala lived, worked, and taught in
large family compounds called illams. Madhava, believed to have been the founder
of the school, worked in the Bakulavihara illam in the town of Sangamagrama, a few
miles north of Cochin. He was an Emprantiri Brahmin, then considered socially inferior
to the dominant Namputiri (or Nambudri) Brahmin. This position does not appear to
have curtailed his teaching activities; his most distinguished pupil was Paramesvara, a
Namputiri Brahmin. No mathematical works of Madhava have been found, though three
of his short treatises on astronomy are extant. The most important of these describes
how to accurately determine the position of the moon at any time of the day. Other
surviving mathematical works of the Kerala school attribute many very significant
results to Madhava. Although his algebraic notation was almost primitive, Madhava’s
mathematical skill allowed him to carry out highly original and difficult research.

Paramesvara (c.1380–c.1460), Madhava’s pupil, was from Asvattagram, about
thirty-five miles northeast of Madhava’s home town. He belonged to the Vatasreni illam,
a famous center for astronomy and mathematics. He made a series of observations of
the eclipses of the sun and the moon between 1395 and 1432 and composed several
astronomical texts, the last of which was written in the 1450s, near the end of his life.
Sankara Variyar attributed to Paramesvara a formula for the radius of a circle in terms of
the sides of an inscribed quadrilateral. Paramesvara’s son, Damodara, was the teacher
of Jyesthadeva (c. 1500–c. 1570) whose works survive and give us all the surviving
proofs of this school. Damodara was also the teacher of Nilakantha (c. 1450–c. 1550)

1

http://www.cambridge.org/9780521114707
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-11470-7 - Sources in the Development of Mathematics: Infinite Series and Products from the Fifteenth
to the Twenty-first Century
Ranjan Roy
Excerpt
More information

2 Power Series in Fifteenth-Century Kerala

who composed the famous treatise called the Tantrasangraha (c. 1500), a digest of the
mathematical and astronomical knowledge of his time. His works allow us determine
his approximate dates since in his Aryabhatyabhasya, Nilakantha refers to his observa-
tion of solar eclipses in 1467 and 1501. Nilakantha made several efforts to establish new
parameters for the mean motions of the planets and vigorously defended the necessity
of continually correcting astronomical parameters on the basis of observation. Sankara
Variyar (c. 1500–1560) was his student.

The surviving texts containing results on infinite series are Nilakantha’s Tantrasan-
graha, a commentary on it by Sankara Variyar called Yuktidipika, the Yuktibhasa by
Jyesthadeva and the Kriyakramakari, started by Variyar and completed by his student
Mahisamangalam Narayana.All these works are in Sanskrit except the Yuktibhasa, writ-
ten in Malayalam, the language of Kerala. These works provide a summary of major
results on series discovered by these original mathematicians of the indistinct past:

A. Series expansions for arctangent, sine, and cosine:

1. θ = tan θ − tan3 θ
3 + tan5 θ

5 −·· · ,
2. sin θ = θ − θ3

3! + θ5

5! − · · · ,
3. cos θ = 1− θ2

2! + θ4

4! − · · · ,
4. sin2 θ = θ2 − θ4

(22−2/2)
+ θ6

(22−2/2)(32−3/2)
− θ8

(22−2/2)(32−3/2)(42−4/2)
+·· · .

In the proofs of these formulas, the range of θ for the first series was 0≤ θ ≤π/4
and for the second and third was 0 ≤ θ ≤ π/2. Although the series for sine and
cosine converge for all real values, the concept of periodicity of the trigonometric
functions was discovered much later.

B. Series for π :

1. π

4 ≈ 1− 1
3 + 1

5 −·· ·∓ 1
n
±fi(n+ 1), i = 1,2,3, where

f1(n)= 1/(2n), f2(n)= n/(2(n2 + 1)),

and
f3(n)= (n2 + 4)/(2n(n2 + 5));

2. π

4 = 3
4 + 1

33−3
− 1

53−5
+ 1

73−7
−·· · ;

3. π

4 = 4
15+4·1 − 4

35+4·3 + 4
55+4·5 −·· · ;

4. π

2
√

3
= 1− 1

3·3 + 1
5·32 − 1

7·33 +·· · ;
5. π

6 = 1
2 + 1

(2·22−1)2−22 + 1
(2·42−1)2−42 + 1

(2·62−1)2−62 +·· · ;
6. π−2

4 ≈ 1
22−1

− 1
42−1

+ 1
62−1

−·· ·∓ 1
n2−1

± 1
2((n+1)2+2)

.

These results were stated in verse form. Thus, the series for sine was described:

The arc is to be repeatedly multiplied by the square of itself and is to be divided [in order] by the
square of each even number increased by itself and multiplied by the square of the radius. The
arc and the terms obtained by these repeated operations are to be placed in sequence in a column,
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1.1 Preliminary Remarks 3

and any last term is to be subtracted from the next above, the remainder from the term then next
above, and so on, to obtain the jya (sine) of the arc.

So if r is the radius and s the arc, then the successive terms of the repeated operations
mentioned in the description are given by

s · s2

(22 + 2)r2
, s · s2

(22 + 2)r2
· s2

(42 + 4)r2
, . . .

and the equation is

y = s− s · s2

(22 + 2)r2
+ s · s2

(22 + 2)r2
· s2

(42 + 4)r2
−·· ·

where y = r sin(s/r). Nilakantha’s Aryabhatiyabhasya attributes the sine series to
Madhava. The Kriyakramakari attributes to Madhava the first two cases of B.1, the
arctangent series, and series B.4; note that B.4 can be derived from the arctangent
by taking θ = π/6. The extant manuscripts do not appear to attribute the other series
to a particular person. The Yuktidipika gives series B.6, including the remainder; it
is possible that this series is due to Sankara Variyar, the author of the work. We can
safely conclude that the power series for arctangent, sine, and cosine were obtained by
Madhava; he is, thus, the first person to express the trigonometric functions as series.
In the 1660s, Newton rediscovered the sine and cosine series; in 1671, James Gregory
rediscovered the series for arctangent.

The series for sin2 θ follows directly from the series for cos θ by an application of
the double angle formula, sin2 θ = 1

2 (1− cos2θ). The series for π/4 (B.1) has several
points of interest. When n→∞, it is simply the series discovered by Leibniz in 1673.
However, this series is not useful for computational purposes because it converges
extremely slowly. To make it more effective in this respect, the Madhava school added
a rational approximation for the remainder after n terms. They did not explain how they
arrived at the three expressions fi(n) in B.1. However, if we set

π

4
= 1− 1

3
+ 1

5
−·· ·∓ 1

n
±f (n), (1.1)

then the remainder f (n) has the continued fraction expansion

f (n)= 1

2
· 1

n+
12

n+
22

n+
32

n+ ·· · , (1.2)

when f (n) is assumed to satisfy the functional relation

f (n+ 1)+f (n− 1)= 1

n
. (1.3)

The first three convergents of this continued fraction are

1

2n
= f1(n),

n

2(n2 + 1)
= f2(n), and

1

2

n2 + 4

n(n2 + 5)
= f3(n). (1.4)
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4 Power Series in Fifteenth-Century Kerala

Although this continued fraction is not mentioned in any extant works of the Kerala
school, their approximants indicate that they must have known it, at least implic-
itly. In fact, continued fractions appear in much earlier Indian works. The Lilavati of
Bhaskara (c. 1150) used continued fractions to solve first-order Diophantine equations
and Variyar’s Kriyakramakari was a commentary on Bhaskara’s book.

The approximation in equation B.6 is similar to that in B.1 and gives further evi-
dence that the Kerala mathematicians saw a connection between series and continued
fractions. If we write

π − 2

4
= 1

22 − 1
− 1

42 − 1
+ 1

62 − 1
−·· ·± 1

n2 − 1
±g(n+ 1), then (1.5)

g(n)= 1

2n
· 1

n+
1 · 2
n+

2 · 3
n+

3 · 4
n+ ·· · , and (1.6)

g1(n)= 1

2n
, g2(n)= 1

2(n2 + 2)
. (1.7)

Newton, who was very interested in the numerical aspects of series, also found the
f1(n) = 1/(2n) approximation when he saw Leibniz’s series. He wrote in a letter of
1676 to Henry Oldenburg:

By the series of Leibniz also if half the term in the last place be added and some other like device
be employed, the computation can be carried to many figures.

Though the accomplishments of Madhava and his followers are quite impressive, the
members of the school do not appear to have had any interaction with people outside of
the very small region where they lived and worked. By the end of the sixteenth century,
the school ceased to produce any further original works. Thus, there appears to be no
continuity between the ideas of the Kerala scholars and those outside India or even
from other parts of India.

1.2 Transformation of Series

The series in equations B.2 and B.3 are transformations of

∞∑
k=1

(−1)k−1

k

by means of the rational approximations for the remainder. To understand this
transformation in modern notation, observe:

π

4
= (1−f1(2))−

(
1

3
−f1(2)−f1(4)

)
+
(

1

5
−f1(4)−f1(6)

)
−·· · . (1.8)

The (n + 1)th term in this series is

1

2n+ 1
−f1(2n)−f1(2n+ 2)= 1

2n+ 1
− 1

4n
− 1

4(n+ 1)
= −1

(2n+ 1)3 − (2n+ 1)
.

(1.9)
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1.3 Jyesthadeva on Sums of Powers 5

Thus, we arrive at equation B.2. Equation B.3 is similarly obtained:

π

4
= (1−f2(2))−

(
1

3
−f2(2)−f2(4)

)
+
(

1

5
−f2(4)−f2(6)

)
−·· · , (1.10)

and here the (n+ 1)th term is

1

2n+ 1
− n

(2n)2 + 1
− n+ 1

(2n+ 2)2 + 1
= 4

(2n+ 1)5 + 4(2n+ 1)
. (1.11)

Clearly, the nth partial sums of these two transformed series can be written as

si(n)= 1− 1

3
+ 1

5
− 1

7
+·· ·∓ 1

2n− 1
±fi(2n), i = 1,2. (1.12)

Since series (1.8) and (1.10) are alternating, and the absolute values of the terms are
decreasing, it follows that

1

(2n+ 1)3 − (2n+ 1)
− 1

(2n+ 3)3 − (2n+ 3)
<

∣∣∣π
4
− s1(n)

∣∣∣
<

1

(2n+ 1)3 − (2n+ 1)3
. Also, (1.13)

4

(2n+ 1)5 + 4(2n+ 1)
− 4

(2n+ 3)5 + 4(2n+ 3)
<

∣∣∣π
4
− s2(n)

∣∣∣
<

4

(2n+ 1)5 + 4(2n+ 1)
. (1.14)

Thus, taking fifty terms of 1 − 1
3 + 1

5 − ·· · and using the approximation f2(n), the
last inequality shows that the error in the value of π becomes less than 4 × 10−10.
The Leibniz series with fifty terms is normally accurate in computing π up to only
one decimal place; by contrast, the Keralese method of rational approximation of the
remainder produces numerically useful results.

1.3 Jyesthadeva on Sums of Powers

The Sanskrit texts of the Kerala school with few exceptions contain merely the
statements of results without derivations. It is therefore extremely fortunate that
Jyesthadeva’s Malayalam text Yuktibhasa, containing the methods for obtaining the
formulas, has survived. Sankara Variyar’s Yuktidipika is a modified Sanskrit version of
the Yuktibhasa. It seems that the Yuktibhasa was the text used by Jyesthadeva’s stu-
dents at his illam. From this, one may surmise that Variyar, a student of Nilakantha,
also studied with Jyesthadeva whose illam was very close to that of Nilakantha.

A basic result used by the Kerala school in the derivation of their series is that

lim
n→∞

1

np+1

n∑
k=1

kp = 1

p+ 1
. (1.15)
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6 Power Series in Fifteenth-Century Kerala

This relation has a long history; sums of powers of integers have been used in the study
of area and volume problems at least since Archimedes. Archimedes summed

S(p)n =
n∑
k=1

kp

for p= 1 and p= 2. For p= 2, he proved the more general result: IfA1,A2, . . . ,An are
n lines (we may take them to be numbers) forming an ascending arithmetical
progression in which the common difference is equal to A1 (the least term), then

(n+ 1)A2
n+A1(A1 +A2 +·· ·+An)= 3(A2

1 +A2
2 +·· ·+A2

n). (1.16)

This implies that

3(12 + 22 +·· ·+n2)= n2(n+ 1)+ (1+ 2+ 3+·· ·+n). (1.17)

Archimedes used this formula in his work on spirals and in computing the volume of
revolution of a segment of a parabola about its axis. The celebratedArab mathematician
al-Haytham (c.965–1039), known also as Alhazen, generalized Archimedes’s formula
to find the volume of revolution of segment of a parabola about its base. The calcu-
lation involved sums of cubes and fourth powers of integers. Al-Haytham proved his
generalization by means of a diagram; it can be expressed in modern notation by

(n)S(p)n = S(p)n +S(p−1)
1 +S(p−1)

2 +·· ·+S(p−1)
n−1 . (1.18)

It is interesting that the statement of Jyesthadeva’s first lemma leading to the proof of
(1.15) is a restatement of al-Haytham’s formula; Jyesthadeva’s result was stated:

Whenever we wish to obtain the sum (sankalitam) of any given powers [say the pth powers of
natural numbers, up to an assigned limit n], we multiply the sankalitam of the next lower powers
[that is, (p− 1)th powers, up to the given limit n] by the limit [n]. The result will contain the
required sankalitam and also the sankalitam of all the sankalitams of all lower powers up to various
limits.

Jyesthadeva’s next lemma stated:

Multiply the lower [power] sankalitam [up to the limit of n] by the limit [n]. Subtract from this
product the result of dividing the product by an integer one more than the given power [p]. The
result will be [asymptotically equal to] the desired sankalitam.

Thus

nS(p−1)
n

(
1− 1

p+ 1

)
∼ S(p)n as n→∞. (1.19)

Jyesthadeva proved this result inductively, but he did not perform the induction com-
pletely. It is easy to see that (1.19) is equivalent to (1.15) and thus Jyesthadeva assumed
that

S(p−1)
n ∼ np/p,
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1.4 Arctangent Series in the Yuktibhasa 7

which is certainly true for p = 1. From this it can be deduced that

S
(p−1)
1 +S(p−1)

2 +·· ·+S(p−1)
n ∼ 1p+ 2p+·· ·+np

p
= S(p)n

p
as n→∞.

Jyesthadeva asserted this but verified it only for p = 2 and 3. But once we fill in the
gap by proving this for all p, equation (1.18) implies that

(n+ 1)S(p−1)
n ∼ S(p)n + S(p)n

p
as n→∞.

Hence by the inductive hypothesis it follows that

S(p)n ∼ np+1

p+ 1
as n→∞.

This was Jyesthadeva’s argument for (1.15).

1.4 Arctangent Series in the Yuktibhasa

The following derivation of the arctangent series, attributed to Madhava, boils down
to the integration of 1/(1+ x2), as do the methods of Gregory and Leibniz.

In Figure 1.1,AC is a quarter circle of radius one with centerO;OABC is a square.
The side AB is divided into n equal parts of length δ so that nδ = 1 and Pk−1Pk = δ.
EF and Pk−1D are perpendicular to OPk. Now, the triangles OEF and OPk−1D are
similar, implying that

EF

OE
= Pk−1D

OPk−1
or EF = Pk−1D

OPk−1
.

The similarity of the triangles Pk−1PkD and OAPk gives

Pk−1Pk

OPk
= Pk−1D

OA
or Pk−1D = Pk−1Pk

OPk
.

Thus,

EF = Pk−1Pk

OPk−1OPk
� Pk−1Pk

OP 2
k

= Pk−1Pk

1+AP 2
k

= δ

1+ k2δ2
.

O

C B

A

Pk�1

Pk

E

F DG

Figure 1.1. Rectifying a circle by the arctangent series.
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8 Power Series in Fifteenth-Century Kerala

Now

arcEG�EF � δ

1+ k2δ2
,

and if we write APk = x = tan θ , where θ =AÔPk, then

arctan x = lim
k→∞

k∑
j=1

δ

1+ j 2δ2
. (1.20)

To compute this limit, Jyesthadeva expanded 1
1+j2δ2 as a geometric series. He derived

the series by an iterative procedure:

1

1+ x = 1− x
(

1

1+ x
)
= 1− x

(
1− x

(
1

1+ x
))

.

Thus, (1.20) is converted to

arctan x = lim
k→∞

δ k∑
j=1

1− δ3
k∑
j=1

j 2 + δ5
k∑
j=1

j 4 −·· ·


= lim
k→∞

x
k

k∑
j=1

1− x3

k3

k∑
j=1

j 2 + x5

k5

k∑
j=1

j 4 −·· ·


= x− x3

3
+ x5

5
−·· · .

The last step follows from (1.15). Note that this is the Madhava–Gregory series for
arctanx and the series for π/4 follows by taking x = 1.

1.5 Derivation of the Sine Series in the Yuktibhasa

Once again, Madhava’s derivation of the sine series has similarities with Leibniz’s
derivation of the cosine series. In Figure 1.2, suppose that AÔP = θ,OP = R, P is
the midpoint of the arc P−1P1, and PQ is perpendicular to OA, where O is the origin
of the coordinate system. Let P = (x,y),P1 = (x1,y1), and P−1 = (x−1,y−1). From the
similarity of the triangles P−1Q1P1 and OPQ, we have

P−1P1

OP
= x−1 − x1

y
= y1 − y−1

x
. (1.21)

For a small arcP−1P =,θ/2, identified by Jyesthadeva with the line segmentP−1P ,
we can write (1.21) as

cos

(
θ + ,θ

2

)
− cos

(
θ − ,θ

2

)
=−sin θ ,θ and (1.22)

sin

(
θ + ,θ

2

)
− sin

(
θ − ,θ

2

)
= cos θ ,θ. (1.23)
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1.5 Derivation of the Sine Series in the Yuktibhasa 9

O
u

Q
A

P1

P

P�1

Q1

Figure 1.2. Derivation of the sine series.

In fact, Bhaskara earlier stated this last relation and proved it in the same way; he
applied it to the discussion of the instantaneous motion of planets. Interestingly, in
the 1650s, Pascal used a very similar argument to show that

∫
cos θ dθ = sin θ and∫

sin θ dθ =−cos θ.
From (1.22) and (1.23) Jyesthadeva derived the result, given in modern notation:

sin θ − θ =−
∫ θ

0

∫ t

0
sin ududt. (1.24)

We also note that Leibniz found the series for cosine using a similar method of repeated
integration. In Jyesthadeva, the integrals are replaced by sums and double integrals by
sums of sums. The series is then obtained by using successive polynomial approxi-
mations for sin θ . For example, when the first approximation sin u≈ u is used in the
right-hand side of (1.24), the result is

sin θ − θ ∼−θ
3

3! or sin θ ∼ θ − θ3

3! .
When this approximation is employed in (1.24), we obtain

sin θ − θ ∼−θ
3

3! +
θ 5

5! .
Briefly, Jyesthadeva arrived at the sums approximating (1.24) by first dividingAP into
n equal parts using division points P1,P2, . . . ,Pn−1. Denote the midpoint of the arc
Pk−1Pk as Pk−1/2. Then by (1.21)

xk+1/2 − xk−1/2 =−,θ
2R
yk, k = 1,2, . . . ,n− 1. (1.25)

We also have

(yk+1 − yk)− (yk− yk−1)= ,θ

2R

(
xk+1/2 − xk−1/2

)
, k = 1, . . . ,n− 1 or (1.26)

yk+1 − 2yk+ yk−1 =−
(
,θ

2R

)2

yk, k = 1,2, . . . ,n− 1. (1.27)
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10 Power Series in Fifteenth-Century Kerala

Now start with k= n−1 and multiply the equations by 1,2, . . . ,n−1 respectively and
sum up the resulting equations. We then have

yn−ny1 =−
(
,θ

2R

)2

(yn−1 + 2yn−2 +·· ·(n− 1)y1)

=−
(
,θ

2R

)2

(y1 + (y1 + y2)+·· ·+ (y1 + y2 +·· ·yn−1)) . (1.28)

This is the result corresponding to (1.24). To obtain the successive polynomial approxi-
mations, Jyesthadeva had to work with sums of powers of integers; in order to deal with
these sums, he applied the same lemma (1.15) he had used for the arctangent series.

1.6 Continued Fractions

The noted twelfth-century Indian mathematician Bhaskara, who lived and worked in
the area now known as Karnataka, used continued fractions in his c. 1150 Lilavati. The
Kerala school was certainly familiar with Bhaskara’s work, since they commented on
it. It is therefore possible that they were aware of the specific continued fractions (1.2)
and (1.6) for the error terms, even though they mentioned only the first few convergents
of these fractions. They did not indicate how they obtained these convergents. Some
historians have suggested that Madhava may have found the approximations for the
error term, without knowing the continued fractions, by comparing the first few partial
sums of the series with a known rational approximation of π . Others speculate that
Madhava may have used a method of Wallis.

Whether or not Madhava knew it, Wallis’s technique can be used to derive the
continued fractions of which the Kerala school gave the convergents; this may be of
interest. Start with the functional equation (1.4) for f (n),

f (n+ 1)+f (n− 1)= 1

n
. (1.29)

It is obvious that a first approximation for f (n) is given by f (n)≈ 1
2n . As a first step

toward the continued fraction for f (n), set

f (n)= 1

2r(0)n
and r(0)n = n+ 1

r
(1)
n

. (1.30)

It follows from (1.29) that r(0)n satisfies(
2r(0)n+1 −n

)(
2r(0)n−1 −n

)
= n2. (1.31)

From (1.30)

2r(0)n+1 −n= n+ 2+ 2

r
(1)
n+1

,
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