Classical solutions play an important role in quantum field theory, high energy physics, and cosmology. Real time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for the cosmology of the early universe. Imaginary time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states.

Written for advanced graduate students and researchers in elementary particle physics, cosmology, and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices, and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions.

E R I C K J . W E I N B E R G is a Professor of Physics in the Department of Physics, Columbia University. Since 1996 he has been Editor of Physical Review D. His research interests include the implications of solitons and instantons for high energy physics, cosmology, and black holes, as well as a variety of other topics in quantum field theory.
I. Montvay and G. Münster, *Quantum Fields on a Lattice*
L. O’Raifeartaigh, *Group Structure of Gauge Theories*
T. Ortín, *Gravity and Strings*
A. M. Ozorio de Almeida, *Hamiltonian Systems: Chaos and Quantization*
L. Parker and D. J. Toms, *Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity*
R. Penrose and W. Rindler, *Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields*
S. Pokorski, *Gauge Field Theories, 2nd edition*
J. Polchinski, *String Theory Volume 1: An Introduction to the Bosonic String*
J. Polchinski, *String Theory Volume 2: Superstring Theory and Beyond*
V. N. Popov, *Functional Integrals and Collective Excitations*
L. V. Prokhorov and S. V. Shabanov, *Hamiltonian Mechanics of Gauge Systems*
R. J. Rivers, *Path Integral Methods in Quantum Field Theory*
R. G. Roberts, *The Structure of the Proton: Deep Inelastic Scattering*
C. Rovelli, *Quantum Gravity*
W. C. Saslaw, *Gravitational Physics of Stellar and Galactic Systems*
R. N. Sen, *Causality, Measurement Theory and the Differentiable Structure of Space-Time*
M. Shifman and A. Yung, *Supersymmetric Solitons*
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, *Exact Solutions of Einstein’s Field Equations, 2nd edition*
J. Stewart, *Advanced General Relativity*
J. C. Taylor, *Gauge Theories of Weak Interactions*
T. Thiemann, *Modern Canonical Quantum General Relativity*
A. Vilenkin and E. P. S. Shellard, *Cosmic Strings and Other Topological Defects*
R. S. Ward and R. O. Wells, *Twistor Geometry and Field Theory*
E. J. Weinberg, *Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics*
J. R. Wilson and G. J. Mathews, *Relativistic Numerical Hydrodynamics*

† Issued as a paperback
To Carolyn, Michael, and Cate
Contents

Preface

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>page xiii</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Conventions</td>
<td>3</td>
</tr>
</tbody>
</table>

2	One-dimensional solitons	6
2.1	Kinks	6
2.2	Quantizing about the kink	13
2.3	Zero modes and collective coordinates	22
2.4	Fermions and fermion zero modes	24
2.5	Kinks in more spacetime dimensions	27
2.6	Multikink dynamics	29
2.7	The sine-Gordon–massive Thirring model equivalence	34

3	Solitons in more dimensions—Vortices and strings	38
3.1	First attempt—global vortices	38
3.2	Derrick’s theorem	42
3.3	Gauged vortices	44
3.4	Multivortex solutions	47
3.5	Quantization and zero modes	49
3.6	Adding fermions	52

4	Some topology	57
4.1	Vacuum manifolds	57
4.2	Homotopy and the fundamental group \(\pi_1(M) \)	58
4.3	Fundamental groups of Lie groups	61
4.4	Vortices and homotopy	64
4.5	Some illustrative vortex examples	68
4.6	Higher homotopy groups	74
4.7	Some results for higher homotopy groups	77

5	Magnetic monopoles with U(1) charges	81
5.1	Magnetic monopoles in electromagnetism	81
5.2	The ’t Hooft–Polyakov monopole	89
x

5.3 Another gauge, another viewpoint 94
5.4 Solutions with higher magnetic charge 96
5.5 Zero modes and dyons 97
5.6 Spin from isospin, fermions from bosons 100
5.7 Fermions and monopoles 104

6 Magnetic monopoles in larger gauge groups 108
6.1 Larger gauge groups—the external view 108
6.2 Larger gauge groups—topology 115
6.2.1 SU(3) broken to SU(2)×U(1) 115
6.2.2 A Z_2 monopole 119
6.2.3 A light doubly charged monopole 120
6.2.4 Electroweak monopoles? 121
6.3 Monopoles in grand unified theories 121
6.3.1 SU(5) monopoles 122
6.3.2 SO(10) monopoles 124
6.4 Chromodyons 125
6.5 The Callan–Rubakov effect 128

7 Cosmological implications and experimental bounds 130
7.1 Brief overview of big bang cosmology 130
7.2 Symmetry restoration and cosmological phase transitions 133
7.3 The Kibble mechanism 136
7.4 Gravitational and cosmological consequences of domain walls and strings 139
7.5 Evolution of the primordial monopole abundance 142
7.6 Observational bounds and the primordial monopole problem 145

8 BPS solitons, supersymmetry, and duality 149
8.1 The BPS limit as a limit of couplings 149
8.2 Energy bounds 151
8.3 Supersymmetry 155
8.4 Multisoliton solutions 160
8.5 The moduli space approximation 163
8.6 BPS monopoles in larger gauge groups 166
8.7 Montonen–Olive duality 172

9 Euclidean solutions 175
9.1 Tunneling in one dimension 175
9.2 WKB tunneling with many degrees of freedom 178
9.3 Path integral approach to tunneling: instantons 181
9.4 Path integral approach to tunneling: bounces 186
9.5 Field theory 190
Contents

10 Yang–Mills instantons 192
10.1 $A_0 = 0$ gauge 192
10.2 Yang–Mills vacua: $A_0 = 0$ gauge 194
10.3 Yang–Mills vacuum: axial gauge 201
10.4 Some topology 203
10.5 't Hooft symbols 207
10.6 The unit instanton 209
10.7 Multi-instanton solutions 212
10.8 Counting parameters with an index theorem 213
10.9 Larger gauge groups 220
10.10 The Atiyah–Drinfeld–Hitchin–Manin construction 223
10.11 The ADHM construction for larger gauge groups 228
10.12 One-loop corrections 231

11 Instantons, fermions, and physical consequences 236
11.1 Anomalies 236
11.2 Spectral flow and fermion zero modes 239
11.3 QCD and the $U(1)$ problem 245
11.4 Baryon number violation by electroweak processes 246
11.5 CP violation and the $\theta F \tilde{F}$ term 248

12 Vacuum decay 254
12.1 Bounces in a scalar field theory 254
12.2 The thin-wall approximation 263
12.3 Evolution of the bubble after nucleation 265
12.4 Tunneling at finite temperature 267
12.5 Including gravity: bounce solutions 272
12.6 Interpretation of the bounce solutions 284
12.7 Curved spacetime evolution after bubble nucleation 291

Appendix A: Roots and weights 295
A.1 Root systems 295
A.2 Weights 302

Appendix B: Index theorems for BPS solitons 305
B.1 Vortices 306
B.2 Monopoles 308

References 312
Index 324
Preface

Semiclassical methods based on classical solutions play an important role in quantum field theory, high energy physics, and cosmology. Real-time soliton solutions give rise both to new particles, such as magnetic monopoles, and to extended structures, such as domain walls and cosmic strings. These could have been produced as topological defects in the very early universe. Confronting the consequences of such objects with observation and experiment places important constraints on grand unification and other potential theories of high energy physics beyond the standard model. Imaginary-time Euclidean instanton solutions are responsible for important nonperturbative effects. In the context of quantum chromodynamics they resolve one puzzle—the U(1) problem—while raising another—the strong CP problem—whose resolution may entail the existence of a new species of particle, the axion. The Euclidean bounce solutions govern transitions between metastable vacuum states. They determine the rates of bubble nucleation in cosmological first-order transitions and give crucial information about the evolution of these bubbles after nucleation. These bounces become of particular interest if there is a string theory landscape with a myriad of metastable vacua.

This book is intended as a survey and overview of this field. As the title indicates, there is a dual focus. On the one hand, solitons and instantons arise as solutions to classical field equations. The study of their many varieties and their mathematical properties is a fascinating subfield of mathematical physics that is of interest in its own right. Much of the book is devoted to this aspect, explaining how the solutions are discovered, their essential properties, and the topological underpinnings of many of the solutions. However, the physical significance of these classical objects can only be fully understood when they are seen in the context of the corresponding quantum field theories. To that end, there is also a discussion of quantum effects, including those arising from the interplay of fermion fields with topologically nontrivial classical solutions, and of some of the phenomenological consequences of instantons and solitons.

The first half of this book focuses on real-time classical solutions. I focus in particular on three classes of solitons—kinks, vortices, and magnetic monopoles—in one, two, and three spatial dimensions, respectively. Several chapters are devoted to their classical properties and many aspects of their quantum behavior. These are followed by a chapter that discusses the cosmological consequences of domain walls and cosmic strings—the dimensionally extended manifestations of kinks and
vortices—and of magnetic monopoles, and the implications of these for proposed high energy theories. Finally, there is a chapter discussing solitons in the BPS limit, including the connections with supersymmetry and duality.

After considering solitons, I turn to Euclidean solutions. Although these are solutions of classical equations, they are associated with tunneling processes that are truly quantum mechanical phenomena. An introductory chapter presenting an overview of this connection is followed by two chapters on Yang–Mills instantons. The first of these is primarily concerned with the mathematical properties of these solutions and their interpretation in terms of vacuum tunneling. Fermions are introduced in the second chapter, which discusses the physical consequences flowing from the instantons. A final chapter describes the bounce solutions and vacuum transitions.

Of necessity, some topics had to be omitted. In particular, Q-balls, nontopological solitons whose existence is based on the possession of a conserved charge rather than on topology, are not covered, nor are skyrmions, a fascinating class of topological solitons.

My goal has been to make the book accessible to advanced graduate students and other newcomers to the field, but also useful for more experienced researchers. I assume that the reader has had an introductory course in quantum field theory and some familiarity with non-Abelian gauge theories, but only the mathematical background of a typical physics graduate student. The homotopy theory needed to understand the topological underpinnings of the solitons is presented and explained. An appendix discusses roots, weights, and other necessary properties of Lie groups and algebras, building on the familiar results associated with SU(2).

I owe much to the colleagues and students with whom I have collaborated in research in this field. I thank Claude Bernard, Xingang Chen, Norman Christ, Huidong Guo, Alan Guth, Jim Hackworth, Conor Houghton, Roman Jackiw, Tom Kibble, Alex Kusenko, Bum-Hoon Lee, Choonkyu Lee, Hakjoon Lee, Kimyeong Lee, Sang-Hoon Lee, Arthur Lue, Ali Masoumi, Dimitrios Metaxas, Chris Miller, Doug Rajaraman, Alex Ridgway, Jon Rosner, Koenraad Schalm, and Piljin Yi. I am grateful to the late Sidney Coleman, from whom I learned field theory and much more.

I am also grateful for the suggestions and comments on aspects of this book from Adam Brown, Dan Kabat, Kimyeong Lee, Eugene Lim, Andy Millis, I-Sheng Yang, and Piljin Yi. I am particularly grateful to Ali Masoumi and Xiao Xiao for carefully reading and pointing out errors in the final text.

Parts of this book were written at the Korea Institute for Advanced Study and at the Aspen Center for Physics. I am grateful to both institutions. My research over the years has been supported in part by the U.S. Department of Energy. My stays at Aspen were supported in part by the U.S. National Science Foundation.

Finally, I thank Carolyn for her support, her encouragement, and her gentle prodding.