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Introduction

1.1 Overview
It is a familiar fact that when a field theory is treated quantum mechanically
the wave solutions of the classical theory lead to elementary quanta that have a
natural interpretation as particles in the quantum theory. This suggests a one-
to-one correspondence between fields and particle species and is the basis for the
standard applications of perturbative quantum field theory.

However, many classical field theories have solutions that are already particle-
like at the classical level. These are characterized by an energy density that is
localized in space and that does not dissipate over time. It is natural to ask
whether these “solitons”, as they are called, have counterparts in the quantum
version of the theory. If so, they would presumably be a new species of particle,
quite distinct from the “elementary” particle associated with the wave solutions
of the free field theory.

It is instructive to compare the classical size of the soliton with the Compton
wavelength that it would have in the quantum theory. If the elementary particles
of the theory have masses of order m and a characteristic coupling of order g,
one typically finds that the soliton has a classical energy

Eclassical ∼
m

g
(1.1)

and a characteristic spatial size �soliton ∼ 1/m. Hence,

λCompton ∼
1

Eclassical
∼ g �soliton. (1.2)

(I am using units with � = 1.) If the coupling is weak, the Compton wavelength
is much less than the classical size, and so we might expect the soliton to survive,
perhaps with slight modifications, after quantization.

A possible objection is the stark contrast between the smooth profile of the
classical solution and the fuzziness of quantum field theory. It is certainly true
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2 Introduction

that the quantum fluctuations of the field are large, even divergent, when the field
is measured at very short distances. However, these fluctuations are reduced when
the field is averaged over a larger smearing distance. We will see that the same
weak-coupling regime that gives �soliton � λCompton also guarantees the exis-
tence of a smearing distance that is both large enough to suppress the quantum
fluctuations and small enough that the classical field profile is still evident.

The inverse dependence on the coupling implies that in this weak-coupling
regime the soliton mass is large, tending toward infinity as the coupling goes to
zero. This explains why the effects of the soliton are not seen in perturbation
theory. Nevertheless, once the classical solution is known, perturbative methods
can be used to quantize the fields about the soliton and to demonstrate that there
is indeed a corresponding one-particle state in the quantum theory. Furthermore,
the quantum corrections to the classical energy are calculable and give a mass of
the form

Mquantum = Eclassical

(
1 + c1g + c2g

2 + · · ·
)
. (1.3)

What about the strong-coupling regime? Even though the soliton may still be a
solution of the classical field equations, the perturbative analysis of the quantum
theory breaks down here, and the arguments for a quantum counterpart to the
soliton are no longer so clear-cut. However, a new and striking phenomenon may
now come into play. There are examples of theories—a particularly well-known
pair being the sine-Gordon and massive Thirring models—that are related by
a duality that maps the weak-coupling regime of one onto the strong-coupling
regime of the other. The sine-Gordon soliton states correspond to elementary
particle states of the massive Thirring model, while the elementary particle of the
sine-Gordon model becomes a massive Thirring bound state. One must conclude
that there is no intrinsic difference between an elementary particle and a soliton.
The distinction between them is simply that one viewpoint or the other is more
convenient for calculation in a particular coupling regime.

Although we live in a world with three spatial dimensions (and perhaps some
additional hidden ones), it can be instructive to consider solitons in fewer dimen-
sions. The analysis of these toy models is often more tractable and helps elucidate
issues of principle. Their solutions can also be trivially extended to higher dimen-
sions, where they acquire new physical significance. A particle-like soliton in
one dimension can be interpreted as a planar solution in three dimensions, cor-
responding to a domain wall. Similarly, a two-dimensional particle-like soliton
becomes a line solution, or string, in three dimensions.

One can also consider solitons in more than three spatial dimensions. Of par-
ticular interest are those in four dimensions. These could be viewed as particles
in a hypothetical world with four spatial dimensions. Alternatively, and more
importantly, they can be interpreted as solutions in a Euclideanized version of
our four-dimensional spacetime. Such Euclidean solutions, or instantons, have
no obvious physical significance in a classical context. However, they become
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1.2 Conventions 3

meaningful quantum mechanically because wavefunctions extend into classically
forbidden regions where the potential energy is greater than the total energy.
Roughly speaking, one can view this as implying a negative kinetic energy,
corresponding to evolution in a Euclidean spacetime with imaginary time. A well-
known consequence is that quantum systems can tunnel though potential energy
barriers to effect transitions that would be classically forbidden. This leads to
important and unexpected nonperturbative effects in gauge theories, with mag-
nitudes that are determined by the action of the relevant instanton. A further
result of tunneling processes in field theory is the decay of metastable vacua
by bubble nucleation, a process of considerable importance for cosmology. The
Euclidean solutions that govern such bubble nucleation are known as bounces.

Finally, a note on terminology. I follow the practice in high energy physics of
using the term soliton for any localized classical solution that does not dissipate
over time. However, the reader should be aware that some other fields use a more
restrictive definition, with the term only used for solutions, arising in integrable
systems, that emerge from scattering processes without deformation or loss of
energy.

1.2 Conventions
Metric and indices
For the spacetime metric I use the “mostly minus” convention, with the metric
ημν = diag (1,−1,−1,−1) in flat four-dimensional spacetime. Coordinates are
defined by

xμ = (t, x, y, z) = (t,x) (1.4)

so that
∂μ = (∂/∂t,∇). (1.5)

Lorentzian spacetime indices are denoted by Greek letters and summation over
repeated indices, one upper and one lower, is to be understood. Purely spatial
indices are denoted by Latin letters, generally from the middle of the alphabet;
summation over repeated indices (possibly both upper or both lower) is also to
be understood. Euclidean spacetime indices are denoted by Latin letters.

The antisymmetric tensor in any dimension is defined to be unity when all of
its indices are upper and in numerical order. Thus, ε123 = ε0123 = ε1234 = 1.

Dirac matrices
The Dirac matrices in four-dimensional Lorentzian spacetime obey

{γμ, γν} = 2gμν . (1.6)

Of these, γ0 is Hermitian, while the remaining three are anti-Hermitian. The
matrix

γ5 = iγ0γ1γ2γ3 (1.7)

is Hermitian and obeys (γ5)2 = I.
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4 Introduction

Units
I use natural units with c, �, and Boltzmann’s constant kB all equal to unity.

Gauge fields
Conventions associated with gauge fields vary within the soliton and instanton
literature. Those used in this book are described below.

The electromagnetic potential is

Aμ = (Φ,A) (1.8)

where Φ and A are the usual scalar and vector potentials. The field strength
tensor is

Fμν = ∂μAν − ∂νAμ (1.9)

so that, e.g., F12 = F 12 = −Bz and F03 = F 30 = Ez. The covariant derivative of
a complex field carrying electromagnetic [or any other U(1)] charge q is given by

Dμφ = (∂μ + iqAμ)φ. (1.10)

The Lagrangian is then invariant under U(1) gauge transformations of the form

φ→ eiqΛ(x)φ,

Aμ → Aμ − ∂μΛ(x). (1.11)

In non-Abelian gauge theories the gauge field is written as a Hermitian element
of the Lie algebra

Aμ = AaμT
a, (1.12)

where the Hermitian generators T a are normalized so that

trT aT b =
1
2
δab. (1.13)

They obey
[T a, T b] = ifabcT

c, (1.14)

with the structure constants fabc being totally antisymmetric. This corresponds
to the standard normalization for the fundamental representation of SU(2),
with the generators being σa/2, where the σa are the Pauli matrices. The field
strength is

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν ], (1.15)

with components
F aμν = ∂μA

a
ν − ∂νAaμ + gfabcA

b
μA

c
ν . (1.16)

A matter field φ can be written as a column vector transforming under an
irreducible representation of the gauge group. Its covariant derivative is

Dμφ = ∂μφ− igAμφ. (1.17)
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1.2 Conventions 5

With components written out explicitly, this is

(Dμφ)j = ∂μφj − igAaμ(ta)jkφk (1.18)

with i, j, and k running from 1 to N and (ta)jk denoting the appropriate
representation of the generators.

Under a non-Abelian gauge transformation U(x), the various quantities above
transform as

Aμ −→ UAμU
−1 − i

g
(∂μU)U−1 = UAμU

−1 +
i

g
U ∂μU

−1,

Fμν −→ UFμνU
−1,

φ −→ Uφ. (1.19)

where U is the transformation written in the appropriate representation of the
group. For an infinitesimal gauge transformation

U = eiΛ ≈ I + iΛ + · · · (1.20)

the change in the gauge potential is

δAμ =
1
g
∂μΛ− i[Aμ,Λ] =

1
g
DμΛ. (1.21)

If the matter fields transform under the adjoint representation, an alternative
notation is to write them as linear combinations of the generators,

φ = φaT a (1.22)

with
Dμφ = ∂μφ− ig[Aμ, φ]. (1.23)

In the special case of a triplet field in an SU(2) gauge theory (where fabc = εabc)
I sometimes adopt the standard three-dimensional vector notation and write

Dμφ = ∂μφ + gAμ×φ,

Fμν = ∂μAν − ∂νAμ + gAμ×Aν . (1.24)

It is sometimes convenient to absorb the gauge coupling in the gauge field by
a rescaling Aμ → gAμ. The Yang–Mills Lagrangian is then

L = − 1
4g2

F aμνF
μνa = − 1

2g2
trFμνFμν . (1.25)
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2

One-dimensional solitons

Field theories in one spatial dimension provide a natural starting point for the
study of solitons. Because of the simplifications that result from working in one
dimension, many more calculations can be carried through explicitly. In addition,
the topological considerations that play an important role in all dimensions are
particularly easy to visualize in one-dimensional theories. Although the primary
value of these theories is as toy models, some of the results we will obtain find
application in the real world. First, there are condensed matter systems that
can be treated as essentially one-dimensional, some of which support solitons.
Second, some of the one-dimensional solitons that we will find can be trivially
extended to higher dimensions, so that a localized one-dimensional soliton can
become a planar domain wall in higher dimensions.

2.1 Kinks
The classic example of a soliton in one spatial dimension [1, 2] arises in a theory
with a single scalar field φ and Lagrangian density

L =
1
2
(∂μφ)(∂μφ)− V (φ), (2.1)

where the scalar field potential

V (φ) = −1
2
m2φ2 +

λ

4
φ4 +

λ

4
v4

=
λ

4
(φ2 − v2)2. (2.2)

Here m2 and λ are both positive and

v =

√
m2

λ
. (2.3)
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2.1 Kinks 7

For later reference, note that in two spacetime dimensions the scalar field is
dimensionless, so that the coupling constants are dimensionful. The dimensionless
parameter that signals weak or strong coupling is the ratio λ/m2.

The Lagrangian is invariant under the transformation φ→ −φ. However, this
symmetry is spontaneously broken, with V (φ) having two degenerate minima, at
φ = ±v. The constant term in Eq. (2.2), which has no effect on the dynamics,
was chosen so that V = 0 at these minima. When the theory is quantized, these
two minima correspond to two physically equivalent vacua. Choosing either one
of them, say φ = v, and then expanding in terms of the shifted field φ − v, one
finds that the theory has a single elementary scalar particle, with mass

√
2m.

The classical Euler–Lagrange equation of the theory is

d2φ

dt2
− d2φ

dx2
= −λ(φ2 − v2)φ. (2.4)

We are particularly interested in static solutions, which satisfy

0 =
d2φ

dx2
− λ(φ2 − v2)φ. (2.5)

This is a nonlinear equation, and it may not be obvious from the outset that
it has any nonsingular solutions other than the two constant vacuum solutions,
φ(x) = v and φ(x) = −v. To persuade ourselves that it does, note that Eq. (2.5)
is also the condition for a configuration φ(x) to be a stationary point of the
potential energy1

U [φ(x)] =
∫
dx

[
1
2

(
dφ

dx

)2

+ V (φ)

]
. (2.6)

This is not surprising. For a system whose kinetic energy is purely quadratic
in time derivatives, the static solutions of the equations of motion are just the
stationary points of the potential energy; the stable solutions are given by the
local minima of U .

Thus, our task is to show that there are configurations other than the vacuum
solutions that are local minima of U [φ(x)]. To this end, consider a configuration,
such as the one shown in Fig. 2.1, in which φ(∞) = v and φ(−∞) = −v. Unless
we have made a remarkably lucky choice, this configuration will not be a solution.
This means that it can be smoothly varied in such a way as to lower its potential
energy. Continuing this process until a minimum of U is reached will lead us
to a static solution. Because a smooth variation cannot change the values of φ
at spatial infinity, the solution we are led to will have φ(∞) �= φ(−∞), and so

1 It is important to remember that the potential energy includes not just the contribution
from the scalar field potential V (φ), but also that from the spatial gradient terms.
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8 One-dimensional solitons
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Fig. 2.1. A field configuration that cannot be smoothly deformed to a vacuum
solution.

cannot be either of the vacuum solutions. It must instead be a nontrivial spatially
varying solution; i.e., the soliton that we are seeking.2

Some important properties of this solution are revealed by a rescaling of
variables. If we write φ = vf and u = mx, Eq. (2.5) becomes

0 =
d2f

du2
− f(f2 − 1), (2.7)

with f(±∞) = ±1, while the energy of this static solution takes the form

E =
m3

λ

∫
du

[
1
2

(
df

du

)2

+
1
4
(f2 − 1)2

]
. (2.8)

It is evident from Eq. (2.7) that f(u) does not contain any explicit factors of m or
λ. Hence, its spatial variation is characterized by a distance that is of order unity
when measured in terms of u, and thus of order m−1 when measured in terms of
x. Because the integral on the right-hand side of Eq. (2.8) is also independent of
m and λ, it must be of order unity, so the solution has an energy of order m3/λ.

This is much greater than the mass
√

2m of the elementary scalar when the
coupling is weak, and diverges in the limit λ→ 0. This fact, which is characteristic
of solitons in field theory, explains why solitons are not encountered in ordinary
perturbative approaches to quantum field theory.

2 This argument is not rigorous, and must be used with care. Because the space of field
configurations is not compact, there need not be any configuration that minimizes the
potential energy. Although this does not happen here, we will encounter such a situation
when we discuss multisoliton configurations later in this section.
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2.1 Kinks 9

It is now time to tackle the field equation directly. Multiplying both sides of
Eq. (2.5) by dφ/dx gives

0 =
d

dx

[
1
2

(
dφ

dx

)2

− λ

4
(φ2 − v2)2

]
. (2.9)

Hence, the quantity in brackets must be independent of x. Evaluating it at x =∞,
we see that it actually vanishes. It follows that

dφ

dx
= ±

√
λ

2
(φ2 − v2). (2.10)

Our boundary conditions require the upper sign. Straightforward integration then
gives

φ(x) = v tanh
[
m√
2
(x− x0)

]
, (2.11)

where x0 is a constant of integration. This solution, which is shown in Fig. 2.2,
is known as the kink solution; x0 can be viewed as specifying the position of the
kink. The solution obtained by starting with the opposite boundary conditions
and taking the lower sign in Eq. (2.10),

φ(x) = −v tanh
[
m√
2
(x− x0)

]
, (2.12)

is called the antikink.
The energy density, shown in Fig. 2.3, is the same for both solutions. It is

concentrated within a region of width ∼ m−1 centered about x0. Outside this
region, the field is essentially indistinguishable from that in a vacuum. Although
it is a different vacuum on opposite sides of the kink, this is not evident to a local

−5 0 5
−1.0

−0.5

0.0

0.5

1.0

mx

v

Fig. 2.2. The kink solution of Eq. (2.11), with x0 = 0.
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10 One-dimensional solitons

−5 0 5

mx

Fig. 2.3. The energy density of the kink solution with x0 = 0.

observer. This localization of the energy suggests that the kink be interpreted as
a kind of particle, with its mass given by the total energy of the static solution,

Mcl =
2
√

2
3

m3

λ
. (2.13)

The subscript here is intended to indicate that this is just the classical approx-
imation to the mass. We will see in the next section that there are quantum
corrections to the mass.

If the kink is to be interpreted as a particle, then there should also be solutions
corresponding to moving kinks. Lorentz transforming the static solution gives

φ(x, t) = v tanh
[
m√
2

(x− ut− x0)√
1− u2

]
, (2.14)

which describes a Lorentz-contracted kink moving with velocity u. The energy
of this solution,

E =
∫
dx

[
1
2

(
dφ

dt

)2

+
1
2

(
dφ

dx

)2

+ V (φ)

]

=
Mcl√
1− u2

, (2.15)

is precisely what is required for a particle with mass Mcl moving with velocity u.
The key element for establishing the existence of the kink was that V (φ) had

multiple degenerate vacua, and that the field approached different vacua at the
two points of spatial infinity. Because of this intertwining of the topology of the
vacua with the topology of spatial infinity, the resulting solitons are known as
topological solitons. We can define a topological current

Jμtop =
1
2v

εμν∂νφ, (2.16)
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